Show simple item record

dc.contributor.authorThamm, Antje MK
dc.date.accessioned2014-09-09T20:10:51Z
dc.date.issued2014-09-09
dc.identifier.urihttp://hdl.handle.net/10464/5682
dc.description.abstractThe Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source for several pharmaceutically valuable monoterpenoid indole alkaloids (MIAs), including the powerful antihypertensive ajmalicine and the antineoplastic agents vincristine and vinblastine. While biosynthesis of MIA precursors has been elucidated, conversion of the common MIA precursor strictosidine to MIAs of different families, for example ajmalicine, catharanthine or vindoline, remains uncharacterized. Deglycosylation of strictosidine by the key enzyme Strictosidine beta-glucosidase (SGD) leads to a pool of uncharacterized reaction products that are diverted into the different MIA families, but the downstream reactions are uncharacterized. Screening of 3600 EMS (ethyl methane sulfonate) mutagenized C. roseus plants to identify mutants with altered MIA profiles yielded one plant with high ajmalicine, and low catharanthine and vindoline content. RNA sequencing and comparative bioinformatics of mutant and wildtype plants showed up-regulation of SGD and the transcriptional repressor Zinc finger Catharanthus transcription factor (ZCT1) in the mutant line. The increased SGD activity in mutants seems to yield a larger pool of uncharacterized SGD reaction products that are channeled away from catharanthine and vindoline towards biosynthesis of ajmalicine when compared to the wildtype. Further bioinformatic analyses, and crossings between mutant and wildtype suggest a transcription factor upstream of SGD and ZCT1 to be mutated, leading to up-regulation of Sgd and Zct1. The crossing experiments further show that biosynthesis of the different MIA families is differentially regulated and highly complex. Three new transcription factors were identified by bioinformatics that seem to be involved in the regulation of Zct1 and Sgd expression, leading to the high ajmalicine phenotype. Increased cathenamine reductase activity in the mutant converts the pool of SGD reaction products into ajmalicine and its stereoisomer tetrahydroalstonine. The stereochemistry of ajmalicine and tetrahydroalstonine biosynthesis in vivo and in vitro was further characterized. In addition, a new clade of perakine reductase-like enzymes was identified that reduces the SGD reaction product vallesiachotamine in a stereo-specific manner, characterizing one of the many reactions immediately downstream of SGD that determine the different MIA families. This study establishes that RNA sequencing and comparative bioinformatics, in combination with molecular and biochemical characterization, are valuable tools to determine the genetic basis for mutations that trigger phenotypes, and this approach can also be used for identification of new enzymes and transcription factors.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectCatharanthus roseus, alkaloids, mutant, regulationen_US
dc.titleIdentification and characterization of a Catharanthus roseus mutant altered in monoterpenoid indole alkaloid biosynthesisen_US
dc.typeElectronic Thesis or Dissertationen_US
dc.degree.namePh.D. Biological Sciencesen_US
dc.degree.levelDoctoralen_US
dc.contributor.departmentDepartment of Biological Sciencesen_US
dc.degree.disciplineFaculty of Applied Health Sciencesen_US
dc.embargo.lift2015-09-04T20:10:51Z
dc.embargo.terms12 Monthsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record