Show simple item record

dc.contributor.authorMashhadi Avaz Tehrani, Hediyeh
dc.date.accessioned2013-09-26T19:58:50Z
dc.date.available2013-09-26T19:58:50Z
dc.date.issued2013-09-26
dc.identifier.urihttp://hdl.handle.net/10464/5004
dc.description.abstractAccording to the List Colouring Conjecture, if G is a multigraph then χ' (G)=χl' (G) . In this thesis, we discuss a relaxed version of this conjecture that every simple graph G is edge-(∆ + 1)-choosable as by Vizing’s Theorem ∆(G) ≤χ' (G)≤∆(G) + 1. We prove that if G is a planar graph without 7-cycles with ∆(G)≠5,6 , or without adjacent 4-cycles with ∆(G)≠5, or with no 3-cycles adjacent to 5-cycles, then G is edge-(∆ + 1)-choosable.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectEdge-choosability, List-edge-colouring, Planar graphsen_US
dc.titleEdge-choosability of Planar Graphsen_US
dc.typeElectronic Thesis or Dissertationen_US
dc.degree.nameM.Sc. Mathematics and Statisticsen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Mathematicsen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US
dc.embargo.termsNoneen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record