• Alternative splicing of DNA polymerase beta in vertebrates

      Bondy-Chorney, Emma; Department of Biological Sciences (Brock University, 2012-11-27)
      Alternative splicing (AS) is the predominant mechanism responsible for increasing eukaryotic transcriptome and proteome complexity. In this phenomenon, numerous mRNA transcripts are produced from a single pre-mRNA sequence. AS is reported to occur in 95% of human multi-exon genes; one specific gene that undergoes AS is DNA polymerase beta (POLB). POLB is the main DNA repair gene which performs short patch base excision repair (BER). In primate untransformed primary fibroblast cell lines, it was determined that the splice variant (SV) frequency of POLB correlates positively with species lifespan. To date, AS patterns of POLB have only been examined in mammals primarily through the use of cell lines. However, little attention has been devoted to investigating if such a relationship exists in non-mammals and whether cell lines reflect what is observed in vertebrate tissues. This idea was explored through cloning and characterization of 1,214 POLB transcripts from four non-mammalian species (Gallus gallus domesticus, Larus glaucescens, Xenopus laevis, and Pogona vitticeps) and two mammalian species (Sylvilagus floridanus and Homo sapiens) in two tissue types, liver and brain. POLB SV frequency occurred at low frequencies, < 3.2%, in non-mammalian tissues relative to mammalian (>20%). The highest POLB SV frequency was found in H. sapiens liver and brain tissues, occurring at 65.4% and 91.7%, respectively. Tissue specific AS of POLB was observed in L. glaucescens, P. vitticeps, and H. sapiens, but not G. gallus domesticus, X. laevis and S. floridanus.The AS patterns of a second gene, transient receptor potential cation channel subfamily V member 1 (TRPV1), were compared to those of POLB in liver and brain tissues of G. gallus domesticus, X. laevis and H. sapiens. This comparison was performed to investigate if any changes (either increase or decrease) observed in the AS of POLB were gene specific or if they were tissue specific, in which case similar changes in AS would be seen in POLB and TRPV1. Analysis did not reveal an increase or decrease in both the AS of POLB and TRPV1 in either the liver or brain tissues of G. gallus domesticus and H. sapiens. This result suggested that the AS patterns of POLB were not influenced by tissue specific rates of AS. Interestingly, an increase in the AS of both genes was only observed in X. laevis brain tissue. This result suggests that AS in general may be increased in the X. laevis brain as compared to liver tissue. No positive correlation between POLB SV frequency and species lifespan was found in non-mammalian tissues. The AS patterns of POLB in human primary untransformed fibroblast cell lines were representative of those seen in human liver tissue but not in brain tissue. Altogether, the AS patterns of POLB from vertebrate tissues and primate cell lines revealed a positive correlation between POLB SV frequency and lifespan in mammals, but not in non-mammals. It appears that this positive correlation does not exist in vertebrate species as a whole.