• Login
    View Item 
    •   Repository Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    •   Repository Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bounds on edit metric codes with combinatorial DNA constraints

    Thumbnail
    View/Open
    Brock_Sun_Jing_2010.pdf (2.071Mb)
    Date
    2010-03-09
    Author
    Sun, Jing.
    Metadata
    Show full item record
    Abstract
    The design of a large and reliable DNA codeword library is a key problem in DNA based computing. DNA codes, namely sets of fixed length edit metric codewords over the alphabet {A, C, G, T}, satisfy certain combinatorial constraints with respect to biological and chemical restrictions of DNA strands. The primary constraints that we consider are the reverse--complement constraint and the fixed GC--content constraint, as well as the basic edit distance constraint between codewords. We focus on exploring the theory underlying DNA codes and discuss several approaches to searching for optimal DNA codes. We use Conway's lexicode algorithm and an exhaustive search algorithm to produce provably optimal DNA codes for codes with small parameter values. And a genetic algorithm is proposed to search for some sub--optimal DNA codes with relatively large parameter values, where we can consider their sizes as reasonable lower bounds of DNA codes. Furthermore, we provide tables of bounds on sizes of DNA codes with length from 1 to 9 and minimum distance from 1 to 9.
    URI
    http://hdl.handle.net/10464/2938
    Collections
    • M.Sc. Computer Science

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback