• GA approach for finding Rough Set decision rules based on bireducts

      Rybkin, Oleg; Department of Computer Science
      Feature selection plays an important role in knowledge discovery and data mining nowadays. In traditional rough set theory, feature selection using reduct - the minimal discerning set of attributes - is an important area. Nevertheless, the original definition of a reduct is restrictive, so in one of the previous research it was proposed to take into account not only the horizontal reduction of information by feature selection, but also a vertical reduction considering suitable subsets of the original set of objects. Following the work mentioned above, a new approach to generate bireducts using a multi--objective genetic algorithm was proposed. Although the genetic algorithms were used to calculate reduct in some previous works, we did not find any work where genetic algorithms were adopted to calculate bireducts. Compared to the works done before in this area, the proposed method has less randomness in generating bireducts. The genetic algorithm system estimated a quality of each bireduct by values of two objective functions as evolution progresses, so consequently a set of bireducts with optimized values of these objectives was obtained. Different fitness evaluation methods and genetic operators, such as crossover and mutation, were applied and the prediction accuracies were compared. Five datasets were used to test the proposed method and two datasets were used to perform a comparison study. Statistical analysis using the one-way ANOVA test was performed to determine the significant difference between the results. The experiment showed that the proposed method was able to reduce the number of bireducts necessary in order to receive a good prediction accuracy. Also, the influence of different genetic operators and fitness evaluation strategies on the prediction accuracy was analyzed. It was shown that the prediction accuracies of the proposed method are comparable with the best results in machine learning literature, and some of them outperformed it.
    • Object Classification using L-Fuzzy Concept Analysis

      Addison, George Tsekpetse; Department of Computer Science
      Object classification and processing have become a coordinated piece of modern industrial manufacturing systems, generally utilized in a manual or computerized inspection process. Vagueness is a common issue related to object classification and analysis such as the ambiguity in input data, the overlapping boundaries among the classes or regions, and the indefiniteness in defining or extracting features and relations among them. The main purpose of this thesis is to construct, define, and implement an abstract algebraic framework for L-fuzzy relations to represent the uncertainties involved at every stage of the object classification. This is done to handle the proposed vagueness that is found in the process of object classification such as retaining information as much as possible from the original data for making decisions at the highest level making the ultimate output or result of the associated system with least uncertainty.