• Multi-Guide Particle Swarm Optimization for Large-Scale Multi-Objective Optimization Problems

      Madani, Amirali; Department of Computer Science
      Multi-guide particle swarm optimization (MGPSO) is a novel metaheuristic for multi-objective optimization based on particle swarm optimization (PSO). MGPSO has been shown to be competitive when compared with other state-of-the-art multi-objective optimization algorithms for low-dimensional problems. However, to the best of the author’s knowledge, the suitability of MGPSO for high-dimensional multi-objective optimization problems has not been studied. One goal of this thesis is to provide a scalability study of MGPSO in order to evaluate its efficacy for high-dimensional multi-objective optimization problems. It is observed that while MGPSO has comparable performance to state-of-the-art multi-objective optimization algorithms, it experiences a performance drop with the increase in the problem dimensionality. Therefore, a main contribution of this work is a new scalable MGPSO-based algorithm, termed cooperative co-evolutionary multi-guide particle swarm optimization (CCMGPSO), that incorporates ideas from cooperative PSOs. A detailed empirical study on well-known benchmark problems comparing the proposed improved approach with various state-of-the-art multi-objective optimization algorithms is done. Results show that the proposed CCMGPSO is highly competitive for high-dimensional problems.