• Enabling and Measuring Complexity in Evolving Designs using Generative Representations for Artificial Architecture

      Harrington, Adrian; Department of Computer Science (Brock University, 2012-11-07)
      As the complexity of evolutionary design problems grow, so too must the quality of solutions scale to that complexity. In this research, we develop a genetic programming system with individuals encoded as tree-based generative representations to address scalability. This system is capable of multi-objective evaluation using a ranked sum scoring strategy. We examine Hornby's features and measures of modularity, reuse and hierarchy in evolutionary design problems. Experiments are carried out, using the system to generate three-dimensional forms, and analyses of feature characteristics such as modularity, reuse and hierarchy were performed. This work expands on that of Hornby's, by examining a new and more difficult problem domain. The results from these experiments show that individuals encoded with those three features performed best overall. It is also seen, that the measures of complexity conform to the results of Hornby. Moving forward with only this best performing encoding, the system was applied to the generation of three-dimensional external building architecture. One objective considered was passive solar performance, in which the system was challenged with generating forms that optimize exposure to the Sun. The results from these and other experiments satisfied the requirements. The system was shown to scale well to the architectural problems studied.
    • Evolving Passive Solar Buildings Using Multi-Behavioural Diversity Search Strategies

      Salma, Umme; Department of Computer Science
      To build a green environment and to plan a sustainable urban area, energy efficient building design plays a major role. Energy efficient measures for building design include heating, cooling, and ventilating, as well as construction materials cost. In passive solar building design, sunlight exposure is used to heat the building in winter and reject heat in summer to keep the building cool. The goals of the passive solar building design are to minimize the energy cost and devices used for heating or cooling. The major goal of this research is to increase the diversity of solutions evolved with an evolutionary system for green building design. An existing genetic programming system for building design is enhanced with a search paradigm called novelty search, which uses measured aspects of designs in an attempt to promote more diverse or novel solutions. Instead of optimizing an objective, novelty search measures behaviors to obtain diverse solutions. We combine novelty search and fitness scores using a many objective strategy called sum of ranks. The simulation software EnergyPlus is used to evaluate the building design and energy costs. An existing fitness-based genetic programming system is enhanced with novelty search. We compare vanilla genetic programming solutions with our novelty-driven solutions. Experimental results show that genetic program solutions are more fit, but novelty strategies create more diverse solutions. For example, novelty search solutions, use a much more diverse selection of building materials.
    • Inverse Illumination Design with Genetic Programming

      Moylan, Kelly; Department of Computer Science
      Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.