• Evolving Passive Solar Buildings Using Multi-Behavioural Diversity Search Strategies

      Salma, Umme; Department of Computer Science
      To build a green environment and to plan a sustainable urban area, energy efficient building design plays a major role. Energy efficient measures for building design include heating, cooling, and ventilating, as well as construction materials cost. In passive solar building design, sunlight exposure is used to heat the building in winter and reject heat in summer to keep the building cool. The goals of the passive solar building design are to minimize the energy cost and devices used for heating or cooling. The major goal of this research is to increase the diversity of solutions evolved with an evolutionary system for green building design. An existing genetic programming system for building design is enhanced with a search paradigm called novelty search, which uses measured aspects of designs in an attempt to promote more diverse or novel solutions. Instead of optimizing an objective, novelty search measures behaviors to obtain diverse solutions. We combine novelty search and fitness scores using a many objective strategy called sum of ranks. The simulation software EnergyPlus is used to evaluate the building design and energy costs. An existing fitness-based genetic programming system is enhanced with novelty search. We compare vanilla genetic programming solutions with our novelty-driven solutions. Experimental results show that genetic program solutions are more fit, but novelty strategies create more diverse solutions. For example, novelty search solutions, use a much more diverse selection of building materials.