• Differential Profiles of Gut Microbiota and Metabolites Associated with Host Shift of Plutella xylostella

      Yang, Fei-Ying; Saqib, Hafiz Sohaib Ahmed; Chen, Jun-Hui; Ruan, Qian-Qian; Vasseur, Liette; He, Wei-Yi; You, Min-Sheng (MDPI, 2020)
      Evolutionary and ecological forces are important factors that shape gut microbial profiles in hosts, which can help insects adapt to different environments through modulating their metabolites. However, little is known about how gut microbes and metabolites are altered when lepidopteran pest species switch hosts. In the present study, using 16S-rDNA sequencing and mass spectrometry-based metabolomics, we analyzed the gut microbiota and metabolites of three populations of : one feeding on radish (PxR) and two feeding on peas (PxP; with PxP-1 and PxP-17 being the first and 17th generations after host shift from radish to peas, respectively). We found that the diversity of gut microbes in PxP-17 was significantly lower than those in PxR and PxP-1, which indicates a distinct change in gut microbiota after host shift. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the functions of energy metabolism, signal transduction, and xenobiotics biodegradation and metabolism were increased in PxP-17, suggesting their potential roles in host adaptation. Metabolic profiling showed a significant difference in the abundance of gut metabolites between PxR and PxP-17, and significant correlations of gut bacteria with gut metabolites. These findings shed light on the interaction among plants, herbivores, and symbionts, and advance our understanding of host adaptation associated with gut bacteria and metabolic activities
    • A ‘green’ approach to fixing polyacrylamide gels

      Carbonara, Katrina; Coorssen, Jens R. (Elsevier, 2020)
      Handling chemicals that require specific safety precautions and protections generates the need for hazardous waste removal and transportation costs. With the growing effort to reduce both cost per analysis and the environmental footprint of research, we report an effective alternative to the widely used methanol/acetic acid gel fixation solution. 1.0 M citric acid dissolved in 5% acetic acid (C3A) provides comparable results following both SDS-PAGE and two-dimensional gel electrophoresis, while also eliminating waste removal costs. •Citric acid dissolved in acetic acid replaces current gel fixative solution.•Cost per analysis is reduced and hazardous waste removal costs eliminated.•Environmental footprint of research is reduced.
    • Mechanism and consequences for avoidance of superparasitism in the solitary parasitoid Cotesia vestalis

      Chen, Wen-Bin; Vasseur, Liette; Zhang, Shuai-Qi; Zhang, Han-Fang; Mao, Jun; Liu, Tian-Sheng; Zhou, Xian-Yong; Wang, Xin; Zhang, Jing; You, Min-Sheng; et al. (Nature Research, 2020)
      A parasitoid's decision to reject or accept a potential host is fundamental to its fitness. Superparasitism, in which more than one egg of a given parasitoid species can deposit in a single host, is usually considered sub-optimal in systems where the host is able to support the development of only a single parasitoid. It follows that selection pressure may drive the capacity for parasitoids to recognize parasitized hosts, especially if there is a fitness cost of superparasitism. Here, we used microsatellite studies of two distinct populations of Cotesia vestalis to demonstrate that an egg laid into a diamondback moth (Plutella xylostella) larva that was parasitized by a conspecific parasitoid 10 min, 2 or 6 h previously was as likely to develop and emerge successfully as was the first-laid egg. Consistent with this, a naive parasitoid encountering its first host was equally likely to accept a healthy larva as one parasitized 10 min prior, though handling time of parasitized hosts was extended. For second and third host encounters, parasitized hosts were less readily accepted than healthy larvae. If 12 h elapsed between parasitism events, the second-laid egg was much less likely to develop. Discrimination between parasitized and healthy hosts was evident when females were allowed physical contact with hosts, and healthy hosts were rendered less acceptable by manual injection of parasitoid venom into their hemolymph. Collectively, these results show a limited capacity to discriminate parasitized from healthy larvae despite a viability cost associated with failing to avoid superparasitism.