• Canadian Society for Exercise Physiology Position Paper: Resistance Training in Children and Adolescents

      Behm, David G.; Faigenbaum, Avery D.; Falk, Bareket; Klentrou, Panagiota (2008)
      Many position stands and review papers have refuted the myths associated with resistance training (RT) in children and adolescents. With proper training methods, RT for children and adolescents can be relatively safe and improve overall health. The objective of this position paper and review is to highlight research and provide recommendations in aspects of RT that have not been extensively reported in the pediatric literature. In addition to the well-documented increases in muscular strength and endurance, RT has been used to improve function in pediatric patients with cystic fibrosis, cerebral palsy and burn victims. Increases in children’s muscular strength have been attributed primarily to neurological adaptations due to the disproportionately higher increase in muscle strength than in muscle size. Although most studies using anthropometric measures have not shown significant muscle hypertrophy in children, more sensitive measures such as magnetic resonance imaging and ultrasound have suggested hypertrophy may occur. There is no minimum age for RT for children. However the training and instruction must be appropriate for children and adolescents involving a proper warm-up, cool-down and an appropriate choice of exercises. It is recommended that low-to-moderate intensity resistance should be utilized 2-3 times per week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15 repetitions for 8-12 exercises. These exercises can include more advanced movements such as Olympic style lifting, plyometrics and balance training, which can enhance strength, power, co-ordination and balance. However specific guidelines for these more advanced techniques need to be established for youth. In conclusion, a RT program that is within a child’s or adolescent’s capacity, involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more advanced or intense RT exercises which can lead to functional (i.e. muscular strength, endurance, power, balance and co-ordination) and health benefits.
    • Changes to the Human Serum Proteome in Response to High Intensity Interval Exercise: A Sequential Top-Down Proteomic Analysis

      Kurgan, Nigel; Noaman, Nour; Pergande, Melissa R.; Cologna, Stephanie M.; Coorssen, Jens R.; Klentrou, Panagiota (Frontiers, 2019-04-02)
      Exercise has been shown to improve health status and prevent chronic diseases. In contrast, overtraining can lead to maladaptation and detrimental health outcomes. These outcomes appear to be mediated in part by released peptides and, potentially, alterations in protein abundances and their modified forms, termed proteoforms. Proteoform biomarkers that either predict the beneficial effects of exercise or indicate (mal)adaptation are yet to be elucidated. Thus, we assessed the influence of highintensity interval exercise (HIIE) on the human serum proteome to identify novel exerciseregulated proteoforms. To this end, a top-down proteomics approach was used, whereby two-dimensional gel electrophoresis was used to resolve and differentially profile intact proteoforms, followed by protein identification via liquid chromatographytandem mass spectrometry. Blood was collected from six young-adult healthy males, pre-exercise and 5 min and 1 h post-exercise. Exercise consisted of a maximal cycle ergometer test followed by 8 min × 1 min high-intensity intervals at 90% Wmax, with 1 min non-active recovery between intervals. Twenty resolved serum proteoforms changed significantly in abundance at 5 min and/or 1 h post-HIIE, including apolipoproteins, serpins (protease inhibitors), and immune system proteins, known to have broad anti-inflammatory and antioxidant effects, involvement in lipid clearance, and cardio-/neuro-protective effects. This initial screening for potential biomarkers indicates that a top-down analytical proteomic approach may prove useful in further characterizing the response to exercise and in understanding the molecular mechanisms that lead to health benefits, as well as identifying novel biomarkers for exercise (mal)adaptation.
    • Do Neuro-Muscular Adaptations Occur in Endurance-Trained Boys and Men?

      Cohen, Rotem; Mitchell, Cam; Dotan, Raffy; Gabriel, David; Klentrou, Panagiota; Falk, Bareket (2010)
      Most research on the effects of endurance training has focused on endurance training's health-related benefits and metabolic effects in both children and adults. The purpose of this study was to examine the neuromuscular effects of endurance training and to investigate whether they differ in children (9.0-12.9 years) and adults (18.4-35.6 years). Maximal isometric torque, rate of torque development (RTD), rate of muscle activation (Q30), electromechanical delay (EMD), and time to peak torque and peak RTD were determined by isokinetic dynamometry and surface electromyography (EMG) in elbow and knee flexion and extension. The subjects were 12 endurance-trained and 16 untrained boys, and 15 endurance-trained and 20 untrained men. The adults displayed consistently higher peak torque, RTD, and Q30, in both absolute and normalized values, whereas the boys had longer EMD (64.7+/-17.1 vs. 56.6+/-15.4 ms) and time to peak RTD (98.5+/-32.1 vs. 80.4+/-15.0 ms for boys and men, respectively). Q30, normalized for peak EMG amplitude, was the only observed training effect (1.95+/-1.16 vs. 1.10+/-0.67 ms for trained and untrained men, respectively). This effect could not be shown in the boys. The findings show normalized muscle strength and rate of activation to be lower in children compared with adults, regardless of training status. Because the observed higher Q30 values were not matched by corresponding higher performance measures in the trained men, the functional and discriminatory significance of Q30 remains unclear. Endurance training does not appear to affect muscle strength or rate of force development in either men or boys.
    • Does bracing affect bone health in women with adolescent idiopathic scoliosis?

      Akseer, Nasreen; Kish, Kimberly; Rigby, W Alan; Greenway, Matthew; Klentrou, Panagiota; Wilson, Philip M; Falk, Bareket (BioMed Central, 2015)
      Purpose: Adolescent idiopathic scoliosis (AIS) is often associated with low bone mineral content and density (BMC, BMD). Bracing, used to manage spine curvature, may interfere with the growth-related BMC accrual, resulting in reduced bone strength into adulthood. The purpose of this study was to assess the effects of brace treatment on BMC in adult women, diagnosed with AIS and braced in early adolescence. Methods: Participants included women with AIS who: (i) underwent brace treatment (AIS-B, n = 15, 25.6 ± 5.8 yrs), (ii) underwent no treatment (AIS, n = 15, 24.0 ± 4.0 yrs), and (iii) a healthy comparison group (CON, n = 19, 23.5 ± 3.8 yrs). BMC and body composition were assessed using dual-energy X-ray absorptiometry. Differences between groups were examined using a oneway ANOVA or ANCOVA, as appropriate. Results: AIS-B underwent brace treatment 27.9 ± 21.6 months, for 18.0 ± 5.4 h/d. Femoral neck BMC was lower (p = 0.06) in AIS-B (4.54 ± 0.10 g) compared with AIS (4.89 ± 0.61 g) and CON (5.07 ± 0.58 g). Controlling for lean body mass, calcium and vitamin D daily intake, and strenuous physical activity, femoral neck BMC was statistically different (p = 0.02) between groups. A similar pattern was observed at other lower extremity sites (p < 0.05), but not in the spine or upper extremities. BMC and BMD did not correlate with duration of brace treatment, duration of daily brace wear, or overall physical activity. Conclusion: Young women with AIS, especially those who were treated with a brace, have significantly lower BMC in their lower limbs compared to women without AIS. However, the lack of a relationship between brace treatment duration during adolescence and BMC during young adulthood, suggests that the brace treatment is not the likely mechanism of the low BMC.
    • Effects of Dairy Consumption on Body Composition and Bone Properties in Youth: A Systematic Review

      Kouvelioti, Rozalia; Josse, Andrea R; Klentrou, Panagiota (American Society for Nutrition, 2017-10-11)
      Background: According to previous reviews, there is no clear evidence on the effects of dairy consumption on body composition and bone properties in pediatric populations. There is a need for further assessment of existing findings and the methodologic quality of studies before summarizing the evidence. Objective: The aim of the study was to assess the quality, methodologies, and substantive findings of randomized controlled trials (RCTs) that examined the effects of dairy consumption on body size, body composition, and bone properties in children and adolescents. Methods: After searching PubMed and Google Scholar up to December 2016, 15 RCTs were retained and included in this systematic review for further analysis. The quality of the included studies was assessed via the Jadad scale; detailed methodologic and statistical characteristics were evaluated, and the main findings were summarized. Results: The effects of dairy consumption were found to be significant for bone structure and nonsignificant for body size and composition. Eight of the 11 RCTs that assessed bone found significant effects (P , 0.05) for bone mineral content and bone mineral density (BMD), with an average 8% increase in BMD after 16 mo of dairy consumption. Conversely, significant effects (P , 0.05) were found only in 2 of the 14 RCTs that focused on body size (i.e., height and weight) and in only 1 of the 11 RCTs that focused on body composition (i.e., lean mass). Conclusions: The systematic consumption of dairy products may benefit bone structure and development, but it does not appear to affect body composition or body size in children and adolescents. On the basis of the Jadad scale, the methodologic quality of the 15 RCTs was rated as good overall. However, there were methodologic disparities and limitations that may have led to nonsignificant results, particularly for body size and composition. Future RCTs designed to address these limitations are warranted.