• The diffusion of Co⠶溩 Zrâ â Tiâ â alloy /|nS. Kumar. -- 260 St Catharines [Ont.] : Dept. of Physics, Brock University,

      Kumar, S.; Department of Physics (Brock University, 1973-07-09)
      The diffusion of Co60 in the body centered cubic beta phase of a ZrSOTi SO alloy has been studied at 900°, 1200°, and 1440°C. The results confirm earlier unpublished data obtained by Kidson17 • The temperature dependence of the diffusion coefficient is unusual and suggests that at least two and possibly three mechanisms may be operative Annealing of the specimen in the high B.C.C. region prior to the deposition of the tracer results in a large reduction in the diffusion coefficient. The possible significance of this effect is discussed in terms of rapid transport along dislocation network.
    • On the formulation and the calculation of the harmonic contributions to the Debye-Waller factor in metals (sodium)

      Dey, Sajalendu.; Department of Physics (Brock University, 1979-07-09)
      The algebraic expressions for the anharmonic contributions to the Debye-Waller factor up to 0(A ) and 0 L% ) £ where ^ is the scattering wave-vector] have been derived in a form suitable for cubic metals with small ion cores where the interatomic potential extends to many neighbours. This has been achieved in terms of various wave-vector dependent tensors, following the work of Shukla and Taylor (1974) on the cubic anharmonic Helmholtz free energy. The contribution to the various wave-vector dependent tensors from the coulomb and the electron-ion terms in the interatomic metallic potential has been obtained by the Ewald procedure. All the restricted multiple whole B r i l l o u i n zone (B.Z.) sums are reduced to single whole B.Z. sums by using the plane wave representation of the delta function. These single whole B.Z. sums are further reduced to the •%?? portion of the B.Z. following Shukla and Wilk (1974) and Shukla and Taylor (1974). Numerical calculations have been performed for sodium where the Born-Mayer term in the interatomic potential has been neglected because i t is small £ Vosko (1964)3 • *n o^er to compare our calculated results with the experimental results of Dawton (1937), we have also calculated the r a t io of the intensities at different temperatures for the lowest five reflections (110), (200), (220), (310) and (400) . Our calculated quasi-harmonic results agree reasonably well with the experimental results at temperatures (T) of the order of the Debye temperature ( 0 ). For T » © ^ 9 our calculated anharmonic results are found to be in good agreement with the experimental results.The anomalous terms in the Debye-Waller factor are found not to be negligible for certain reflections even for T ^ ©^ . At temperature T yy Op 9 where the temperature is of the order of the melting temperature (Xm) » "the anomalous terms are found to be important almost for all the f i ve reflections.