• The infared optical properties of Sr2RuO4 and SmTiO3 including an object-oriented resistivity interface /

      Hildebrand, Mylo George.; Department of Physics (Brock University, 1999-05-21)
      The perovskite crystal structure is host to many different materials from insulating to superconducting providing a diverse range of intrinsic character and complexity. A better fundamental description of these materials in terms of their electronic, optical and magnetic properties undoubtedly precedes an effective realization of their application potential. SmTiOa, a distorted perovskite has a strongly localized electronic structure and undergoes an antiferromagnetic transition at 50 K in its nominally stoichiometric form. Sr2Ru04 is a layered perovskite superconductor (ie. Tc % 1 K) bearing the same structure as the high-tem|>erature superconductor La2_xSrrCu04. Polarized reflectance measurements were carried out on both of these materials revealing several interesting features in the far-infrared range of the spectrum. In the case of SmTiOa, although insulating, evidence indicates the presence of a finite background optical conductivity. As the temperature is lowered through the ordering temperature a resonance feature appears to narrow and strengthen near 120 cm~^ A nearby phonon mode appears to also couple to this magnetic transition as revealed by a growing asymmetry in the optica] conductivity. Experiments on a doped sample with a greater itinerant character and lower Neel temperature = 40 K also indicate the presence of this strongly temperature dependent mode even at twice the ordering temperature. Although the mode appears to be sensitive to the magnetic transition it is unclear whether a magnon assignment is appropriate. At very least, evidence suggests an interesting interaction between magnetic and electronic excitations. Although Sr2Ru04 is highly anisotropic it is metallic in three-dimensions at low temperatures and reveals its coherent transport in an inter-plane Drude-like component to the highest temperatures measured (ie. 90 K). An extended Drude analysis is used to probe the frequency dependent scattering character revealing a peak in both the mass enhancement and scattering rate near 80 cm~* and 100 cm~* respectively. All of these experimental observations appear relatively consistent with a Fermi-liquid picture of charge transport. To supplement the optical measurements a resistivity station was set up with an event driven object oriented user interface. The program controls a Keithley Current Source, HP Nano-Voltmeter and Switching Unit as well as a LakeShore Temperature Controller in order to obtain a plot of the Resistivity as a function of temperature. The system allows for resistivity measurements ranging from 4 K to 290 K using an external probe or between 0.4 K to 295 K using a Helium - 3 Cryostat. Several materials of known resistivity have confirmed the system to be robust and capable of measuring metallic samples distinguishing features of several fiQ-cm.
    • La1-xSrxMnO3 as a candidate for a room temperature pressure sensor /

      Teymoori, Roshanak.; Department of Physics (Brock University, 2003-05-21)
      Perovskite manganite compounds, Lai-xDxMnOs (D-divalent alkaline earth Ca, Sr or Ba), whose electrical and magnetic properties were first investigated nearly a half century ago, have attracted a great deal of attention due to their rich phase diagram. From the point of view of designing a future application, the strong pressure dependence of the resistivity and the accompanying effects in thin films have potential for application in pressure sensing and electronic devices. In this study we report our experimental investigations of pressure dependence of the resistivity of Lao.siSvo^iQMnOs and Lai-xSvxMnOs (LSMO) epitaxial films with x= 0.15, 0.20, 0.25, 0.30, 0.35, on SrTiOs substrates.
    • Study of colossal magnetoresistance and pressure effects in La2/3Ca1/3MnO2 thin films /

      Roch, Tomás.; Department of Physics (Brock University, 1998-05-21)
      The main purpose of this thesis is to study properties of La2/3Cai/3Mn03, both polycrystalline ceramics and thin films. This material has striking related electrical and magnetic properties. Thin films show colossal negative magnetoresistance (CMR) near transition from an insulating to a metallic state accompanied closely by transition from a paramagnetic to a ferromagnetic state. The double exchange mechanism (DE) and the Jahn-Teller deformations play an important role in CMR effect. Applied pressure has a very similar effect as does an applied magnetic field, except, at low temperatures (T<Tc) the field suppresses the resistivity more than pressure. In our study we performed x-ray diffraction analysis, resistivity and magnetization measurements, as well as measurements of resistivity under applied pressure. The origin of strong resistivity change at low temperatures can be explcdned by the intergranular spin-dependent scattering of DE electrons. Oxygen stoichiometry plays an important role in the magnitude and position of MR(T) maximum. The distortions of structure and Mn-O-Mn bonds in applied pressure axe discussed. The fabrication of La2/3Cai/3Mn03 thin films by pulsed laser deposition was successfully developed. The films grown on (100) SrTiOs substrate are c-axis oriented and exhibit negative magnetoresistance Ap/p(H) of over 400% at 245°C and 4200% at 90 K.
    • Systematic studies of the effect of pressure on magnetic and electronic properties of La2/3Ca1/3MnO3 thin films with various thicknesses /

      Jacob, Sarkis Y.; Department of Physics (Brock University, 1999-05-21)
      Interest in mixed-valent perovskite manganese oxides of La\-xAxMnO^ (v4-divalent alkaline earth Ca, Sr or Ba), whose unusual properties were discovered nearly a half century ago, has recently been revived. The discovery of the colossal magnetoresistance and pressure effects introduced new questions concerning the complex interplay between lattice structure, magnetism and transport in doped perovskite manganites. In this study, we report our experimental investigations of pressure and magnetic field dependencies of La-i/sCai/sMnOs (LCMO) epitaxial films with various thickness on SrTiO$ substrate. An analysis of film thickness dependency of the resistivity of LCMO epitaxial films under pressure and magnetic field has been performed by taking into account substrate contributions. This verifies the correlation of lattice distortion with magnetic and transport properties. Strong dependencies of Mn — O — Mn bond bending and Mn — O bond stretching with pressure as well as Mn spin alignment with magnetic field, and the lattice distortion induced by the substrate are discussed.