• Geology of the Rankin Inlet area, Northwest Territories /

      Laporte, Pierre J.; Department of Earth Sciences (Brock University, 1975-06-09)
      The Rankin Inlet area, on the west shore of Hudson Bay in the Northwest Territories, is in the Churchill Structural Province. Metamorphosed volcanic and sedimentary rocks, previously mapped as Archean and part of the Kaminak Group, underlie most of the area. The Rankin Inlet Group consists of greywacke, with minor conglomeratic greywacke, quartzite and dolomite, overlain by massive and pillowed basaltic flows. Gabbro sills intrude the sediments near the base of the volcanic sequence and three serpentinite sills outcrop at the base of the volcanic sequence. The sediments are in fault-contact with quartz monzonite to the south and were intruded by granitic rocks to the northwest. Two periods of folding were defined by the mapping. The first generation folds are recumbent isoclinal folds, with northwest-trending and northeast-dipping axial planes, formed through gravitational sliding. The second generation folds are symmetrically disposed about the axis of the granitic intrusion and have east-southeast trending and nearly vertical axial planes. Whole-rock analysis of 64 rock samples indicates that metasomatic alteration accompanied the intrusion of both the granitic rocks and the serpentinite. The volcanic rocks, gabbro and serpentinite were derived from a magma of oceanic tholeiitic affinities. The stratigraphic sequence and chemistry of the volcanic rocks of the Rankin Inlet Group indicate that this assemblage is correlative with the Hurwitz Group rather than the Kaminak Group and is therefore Aphebian in age.
    • Postglacial paleoecology and effects of European settlement on the environment of Lake Hunger and Lake Lisgar, Southwestern Ontario /

      Winn, Ronald Frederick.; Department of Earth Sciences (Brock University, 1975-06-15)
      This investigation has three purposes I to make a comparative chemical study on sediment cores collected for Lake Lisgar (man-made lake in an urban center) and Lake Hunger (natural basin in a rural community) encompassing the time since European settlement I to determine the postglacial chemical history of Lake Hunger, and to determine the vegetational history of the Lake Hunger area from postglacial time to the present. The minus 80 mesh fraction of 108 soil samples and 18 stream sediment samples collected in the vicinity of Lakes' Lisgar and Hunger were analyzed for cold hydrochloric acid soluble lead, zinc, nickel, cobalt, copper, aluminum, sodium, potassium, calcium, magnesium, iron and manganese. Lacustrine sediments from 5 boreholes in the Lake Lisgar basin were collected. Boreholes 1, 2, 3, and 4 were analyzed for palynological and chemical information and Borehole 5 was subjected to pollen and ostracode analysis. Lacustrine sediments from 6 boreholes in the Lake Hunger basin were collected. Palyno- -logical and chemical analysis were performed on Boreholes 1, 2, 3, 4, and 6 and Borehole 5 was analyzed for pollen. In addition, radiocarbon dates were obtained on sediment samples from Boreholes 4 and 5. A total of 8 surface samples were collected from the margins of the Lake Hunger basin and these were chemically analyzed in the laboratory. All of the lacustrine sediments were ashed and analyzed for cold hydrochloric acid soluble lead, zinc, nickel, cobalt, copper, aluminum, sodium, potassium, calcium, magnesium, iron and manganese using a Perkin Elmer 40) Atomic Absorption spectrophotometer. The results . obtained for the 12 elements were expressed as parts per million in dry sediments. It was found that man's influence on the element distribution patterns in the sediments of Lake Lisgar appeared to be related to his urbanizing developments within the lake vicinity, whereas, the rural developments in the vicinity of lake Hunger appeared to have had little effect on the element distribution patterns in the lake sediments. The distribution patterns of lead, zinc, nickel, cobalt, aluminum, magnesium, sodium and potassium are similar to the % ash curve throughout postglacial time indicating that the rate of erosion in the drainage basin is the main factor which controls the concentration of these elements in the sediments of Lake Hunger. The vegetational history, from palynological analysis, of Lake Hunger from postglacial time to the present includes the following stages: tundra, open spruce forest, closed boreal forest, deciduous forest and the trend towards the re-establishment of pine following the clearing of land and the subsequent settlement of the Lake Hunger area by European settlers. The concentrations of some elements (cobalt, nickel, iron, manganese, calcium, magnesium, sodium and potassium) in the sediments of Lake Hunger appears to be higher during pre-cultural compared to post-cultural times. At least one complete postglacial record of the chemical history within a lake basin is necessary in order to accurately assess man's effects on his environment.
    • A reconnaissance study of the metamorphic petrology and volcanic geochemistry of a portion of the Island Lake greenstone belt, Manitoba /

      Delaney, Gary D.; Department of Earth Sciences (Brock University, 1976-06-09)
      The Island Lake greenstone belt is one of the major Archean supracrustal exposures in the northwestern part of the Superior Province of the Canadian Shield. This belt is subdivided into two units: 1) a lower sequence characterised by pillowed to massive, locally pyroclastic, basalt to andesite with a thin central zone of felsic derivatives, all of which are interbedded with and overlain by thick sequences of turbidite facies rock; 2) the upper unit which consists of thick stratified conglomerate overlain by thickly bedded arkose and feldspathic greywacke. Reconnaissance sampling traverses were completed across both the strike of the belt and along its margins with adjacent granitoids. Most of the belt is within the greenschist metamorphic f acies with amphibolite facies occurring in certain areas near t he margins. A post-tectonic, low pressure thermal event may be responsible for the development of a unit of cordierite schi s t which stretches southeastwards from the east end of Cochrane Bay. Volcanism is cyclical in nature changing from tholeiitic to calc-alkaline. There is a general progression in the character of the lavas from mafic t o felsic with stratigraphic height. Chemica l d a ta sugges t that h i gh level fractionation of a mantle- derived ' dry' magma i s t he s ource of the thole i iti c lavas. Contamination of this magma with 'we t' sia l and subsequent fractionation may be r esponsi b l e for the calcalkaline phases .Observations of stratigraphic relationships (in particular the contact between the supracrustals and the granitoids) coupled with the metamorphic and chemical studies, allow the construction of a preliminary model for the evolution of the Island Lake greenstone belt. The following sequential development is suggested: 1) a platform stage characterised by the subaqueous effusion of mafic to intermediate lavas of alternating tholeiitic and calc-alkaline affinities; 2) an edifice stage marked by the eruption of felsic calc-alkaline rocks; 3) an erosional stage characterised by the deposit~on of thick sequences of turbidite facies rocks; 4) the impingement of granitic masses into the margins of the greenstone belt, which was probably related to a downward warping of the supracrustal pilei 5) the erosion of sialic massifs surrounding and within the greenstone belt and of early supracrustal piles, to give the clastic upper unit.
    • Landscape geochemical investigations in the vicinity of a lead deposit near Snertingdal, southern Norway

      Woerns, Norbert M.; Department of Earth Sciences (Brock University, 1976-10-02)
      Landscape geochemical investigations were conducted upon portions of a natural uniform landscape in southern Norway. This consisted of sampling both soil profile samples and spruce tree twigs for the analysis of twelve chemical elements. These elements were cobalt, copper, nickel, lead, zinc, manganese, magnesium, iron, calcium, sodium, potassium and aluminum which were determined by atomic absorption analysis on standardized extraction techniques for both organic and inorganic materials. Two "landscape traverses" were chosen for a comparative study of the effects of varying landscape parameters upon the trace element distribution patterns throughout the landscape traverses. The object of this study was to test this method of investigation and the concept of an ideal uniform landscape under Norwegian conditions. A "control traverse" was established to represent uniform landscape conditions typical of the study area and was used to determine "normal" or average trace element distribution patterns. A "signal traverse" was selected nearby over an area of lead mineralization where the depth to bedrock is very small. The signal traverse provided an area of similar landscape conditions to those of the control traverse with significant differences in the bedrock configuration and composition. This study was also to determine the effect of the bedrock mineralization upon the distribution patterns of the twelve chemical elements within the major components of the two landscape traverses (i.e. soil profiles and tree branches). The lead distribution within the soils of the signal traverse showed localized accumulations of lead within the overburden with maximum values occurring within the organic A horizon of soil profile #10. Above average concentrations of lead were common within the signal traverse, however, the other elements studied were not significantly different from those averages determined throughout the soils of the control traverse. The spruce twig samples did not have corresponding accumulations of lead near the soil lead anomaly. This is attributable to the very localized nature of the lead dispersion pattern within the soils. This approach to the study of the geochemistry of a natural landscape was effective in establishing: a) average or "normal" trace element distribution patterns b) local variations in the landscape morphology and c) the effect of unusually high lead concentrations upon the geochemistry of the landscape (i.e. within the soil profiles and tree branches). This type of study provides the basis for further more intensive studies and serves only as a first approximation of the behaviour of elements within a natural landscape.
    • Palynology of late-glacial and postglacial sediments in Georgian Bay, Ontario, Canada, as related to the Great Lakes history /

      McAtee, Christopher L.; Department of Earth Sciences (Brock University, 1977-06-15)
      This investigation comprises three parts: (1) the source, mechanism of transport, and distribution of pollen, spores and other palynomorphs in Georgian Bay bottom sediments and a comparison of these data with the contemporary vegetation, (2) the relative significance of fluvial transportation of pollen and spores, and (3) the late- and postglacial history of vegetational and climatic changes in the Georgicin Bay region. Modem pollen and spore assemblages in Georgian Bay do reflect the surrovinding vegetation when preservation and pollen production by the different species are considered and accounted for. Relative pollen percentage and concentration isopoll patterns indicate that rivers contribute large quantities of pollen and spores to Georgian Bay. This is further substantiated by large amounts of pollen and spores which were caught in traps in the Moon, Muskoka, and Nottawasaga Rivers which flow into Georgian Bay. The majority of pollen and spores caught in these traps were washed into the rivers by surface water runoff and so reflect the vegetation of the watershed in a regional sense. In a 12.9 metre long sediment core from northeastern Georgian Bay the relative percentage and absolute pollen concentrations allow correlation of Georgian Bay Lake phases with climatic and forest history. Four distinct pollen zones are distinguished: zone GB IV which is the oldest, reflects the succession from open spruce woodland to boreal forest; zone GB III represents a period of pine-mixed hardwoods forests from about 10,000 to 7,500 years ago. A pine-maplehemlock association dominated in zone GB II, although during the culmination of postglacial warming about 4,000 to 5,000 years ago the Georgian Bay forests had a more deciduous character. Zone GB I clearly shows European man's disturbance of the forest by logging activities.
    • Onondaga chert : geological and palynological studies as applied to archaeology /

      Parkins, William George.; Department of Earth Sciences (Brock University, 1977-06-15)
      Cherts from the Middle Devonian Onondaga Formation of the Niagara Peninsula in Southern Ontario and Western New York State can now be distinguished from those of the Early Devonian Bois Blanc Formation of the same area based on differences in petrology, acritarchs, spores, and "Preservation Ratio" values. The finely crystalline, carbonate sediments of the Bois Blanc Formation were deposited under shallow, low energy conditions characterised by the acritarchs Leiofusa bacillum and L. minuta and a high relative abundance of the spore, Apiculiretusispora minor. The medio crystalline and bioclastic carbonate sediments of the Onondaga Formation were deposited under shallow, high energy conditions except for the finely crystalline lagoonal sediments of the Clarence Member which is characterised by the acritarchs Leiofusa navicula, L. sp. B, and L. tomaculata . The author has subdivided and correlated the Clarence Member of the Onondaga Formation using the "Preservation Ratio" values derived from the palynomorphs contained in the cherts. Clarence Member cherts were used by the Archaic people of the Niagara Peninsula for chipped-stone tools. The source area for the chert is considered to be the cobble beach deposits along the north shore of Lake Erie from Port Maitland to Nanticoke
    • The role of vermiculite in the fixation of potassium in soils and the availability of potassium for vine nutrition in some Niagara vineyards

      Gombos, Frances.; Department of Earth Sciences (Brock University, 1977-07-09)
      The Niagara P e n i n s u l a Supports a f l o u r i s h i n g grape and wine i n d u s t r y , where much of the potassium f e r t i l i z e r a p p l i e d to the vineyard s o i l s may not show up in the f r u i t or vines but is fixed by the clay m i n e r a l s in the s o i l . Soil samples were c o l l e c t e d on a n o r t h - s o u t h l i ne through a high d e n s i t y of v i n e y a r d s and examined by x - r a y d i f f r a c t i o n to determine the r e l a t i o n s h i p of potassium with r e s p e c t to c l a y minerals p r e s e n t . The i n v e s t i g a t i o n shows the p h y l l o s i l i c a t e m i n e r a l s present t o be i l l i t e , c h l o r i t e and v e r m i c u l i t e . The v e r m i c u l i t e p r e s e n t is not t h e usual M g - v e r m i c u l i t e , but a K - v e r m i c u l i t e which can be c o n s i d e r e d as a degraded i l l i t e - - t h a t i s , an i l l i t e which has l o s t potassium i o n s . The r e s u l t i n g K - d e f i c i e n t mineral possesses a very l i m i t e d expansion l a t t i ce and is capable of c a p t u r i n g potassium ions and c o n v e r t i n g back t o the i l l i t e form. A g r i c u l t u r a l l y , t h i s causes potassium d e f i c i e n c y in p l a n t s.
    • Vegetational history and geochronology of several sites in South Southwestern Ontario with discussion on mastodon extinction in Southern Ontario /

      Winn, Cathie Eileen.; Department of Earth Sciences (Brock University, 1977-07-14)
      This study has three purposes: to establish a chronologically controlled vegetational history for a number of sites in south Southwestern Ontario; to utilize the resulting data to support and/or add to the current understanding of Quaternary geology and stratigraphy, and the glacial and postglacial history of the Great Lakes in south Southwestern Ontario; and to attempt to propose a possible explanation for the extinction of the mastodon in Southern Ontario. Palynological and geochronological analyses were conducted on material collected from eleven sites (east to west): Verbeke Mastodon Site, Woloshko Mastodon Site, Walker Pond II, Pond Mills I, Lake Hunger Bog, Bouckaert Site. Mabee Site, Cornell Bog. Colles Lake I, Folden Mastodon Site and Forest Pond. Individual geochronologically controlled (where possible) vegetational histories were reconstructed for each of the sites investigated. The results of the individual studies, when considered in overview. indicated the existance of an established closed boreal forest throughout south Southwestern Ontario by 10,000 years B.P. This evidence for a significant climatic change coincident throughout south Southwestern Ontario supports the proposed age of 10,000 years B.P. for the Pleistocene/Holocene Boundary (Terasmae, 1972). Remnant patches of 'open spruce parkland' persisted in small local 'wet' areas. It was in these areas that the mastodon was restricted during early Holocene time. With continued encroachment by the surrounding boreal forest, possibly speeded up by this browser's destructive feeding habits, the spruce enclaves shrank and the mastodon became extinct in south Southwestern Ontario. The results of this thesis basically support Dreimanis' (1967, 1968) proposed 'Environmental-Climatic' theory for mastodon extinction. It is suggested that increased dryness during the present interglacial compared to the climate of earlier interglacials may be the key to unravelling the problem of mastodon extinction in eastern North America.
    • Development of hypogene and supergene alteration and copper mineralization patterns, Sar Cheshmeh porphyry copper deposits, Iran /

      Ghorashi-Zadeh, Medhi.; Department of Earth Sciences (Brock University, 1978-06-09)
      The formation of the Sar Cheshmeh porphyry Cu-Mo deposit is related to the culmination of calc-alkaline igneous activity in the Kerman region. The deposit comprises a suite of Late Cenozoic intrusive sub-volcanic and extrusive rocks emplaced into a folded series of Eocene andesitic lavas and pyroclastic sediments. The earliest stage of magmatism was emplacement of a large granodiorite stock about 29 m.y.b.p. This was followed by intrusion of two separate porphyritic bodies at 15 (Sar Cheshrneh porphyry) and 12 m.y.b.p. (Late porphyry) and a series of sub-volcanic dikes between 12 and 9 m.y.b.p. Magmatic activity terminated with multi-phase extrusion of a Pelean dacitic dome complex between 10 and 2.8 m.y.b.p. The country rocks and the earlier porphyritic intrusions are pervasively altered to biotite-rich potassium silicate (metasomatic and hydrothermal) sericite-clay, phyllic and chlorite-clay, argillic assemblages. These grade outwards to an extensive propylitic zone. Within the ore body, the later intra-. and post-mineral dikes only reach the propylitic grade. At least three different sets of quartz veins are present, including a sericite-chlorite-quartz set which locally retrogrades pervasive secondary biotite to sericite. In the hypogene zone, metasomatic and hydrothermal alteration is related to all stages of magmatism but copper mineralization and veining are restricted to a period of 15 to 9 m.y.b.p.related to the early intrusive phases. The copper mineralization and silicate alteration do not fit a simple annular ring model but have been greatly modified by, 1. The existence of an ititial, outer ring, of metasomatic alteration overprinted by an inner.ring of hydrothermal alteration and, 2. later extensive dilating effects of intra- and post-mineral dikes. The hydrothermal clay mineral assemblage in the hypogene zone is illite-chlorite-kaolinite-smectite (beidellite). Preliminary studies indicate that the amount of each of these clays varies vertically and that hydrothermal zonation of clay minerals is possible. However, these minerals alter to illite-kaolinite assemblages in the supergene sulfide zone and to more kaolinite-rich assemblages in the supergene leached zone. Hydrothermal biotite breaks down readily in the supergene zone and is not well preserved in surface outcrops. The distribution of copper minerals in the supergene sulfide enrichment zone is only partly related to rock type being more dependent on topography and the availability of fractures.
    • Petrography and geochemistry of the McArthur Township area, Ontario /

      Tabatabai, Mehran.; Department of Earth Sciences (Brock University, 1978-06-15)
      The McArthur Township area in the Archean Abitibi Belt of northeast Ontario contains northwesterly trending volcanic rocks which are located on a limb of a large syncline. The axial trace of the syncline passes through the adjacent Douglas Township. The Archean volcanic rocks and associated sedimentary rocks are intruded and deformed by two large plutons and a few smaller hypabyssal intrusions. A petrographic and geochemical study of the Precambrian rocks exposed 1n the study area was undertaken in order to investigate the metamorphic grade and geochemical characteristics of the rocks. All the samples were studied with the microscope and analysis of 20 major and trace elements were determined on a selection of the less altered specimens by x-ray fluorescence. Three different periods of igneous activity have occurred in the study area. The first two periods were dominated by volcanic extrusive rocks accompanied by gabbroic sills. The third cycle is the diapiric intrusion of the granitic plutons and subsequent metamorphism of the older rocks to the low to medium grade. Two periods of sedimentation are also recognized in the study area which occurred after the first and second cycle of volcanism. Chemically, the lavas are subdivided into three main associations: (1) The komatiitic association is characterized by high MgO, high Ni, low Ti02 and a low FeO*/(FeO* + MgO) ratio. They occupy the base of each volcanic cycle and some of the flows exhibit spinifex textures. (2) The tholeiitic association displays distinct iron and titanium enrichment trends in the intermediate membersor -i r (3) The calc-alkaline association contains low FeO* and TI02 and high Ni contents relative to modern calc-alkaline types. They are formed at the end of each cycle of volcanism and overlie the tholeiitic flows. All three associations of the first volcanic cycle are exposed in the study area, while the second cycle is represented by a komatiltic sequence. The volcanic rocks were possibly formed by multiple partial melting of the Archean mantle to produce parental magmas under various P - T conditions.
    • A hypothesis for the geochemical anomaly in the North Creek Watershed /

      Veska, Eric.; Department of Earth Sciences (Brock University, 1978-06-15)
      A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
    • Genesis and distribution of Mississippi Valley-type ore assemblages in Middle Silurian strata, Niagara Peninsula, Ontario /

      Mostaghel, Mohammad Ali.; Department of Earth Sciences (Brock University, 1978-06-15)
      Presently non-commercial occurrences of Mississippi Valley-type ore assemblages in the Middle Silurian strata of the Niagara Peninsula have been studied. Based on this detailed study, a new poly-stage genetic model is proposed which relates ore mineralization in carbonate environments to the evolution of the sedimentary basin. Sulphide ore mineralization occurred during two episodes: 1. During the late diagenesis stage, which is characterized by compaction-maturation of the sediments, the initial mineralization took place by upward and outward movement of connate waters. Metals were probably supplied from all the sediments regardless of their specific lithologies. However, clay minerals were possibly the main contributors. The possible source of sulphur was from petroleum-type hydrocarbons presently mixed with the sediments at the site of ore deposition. Evidence for this is the fact that the greatest abundance of ore minerals is in petroliferous carbonates. The hydrocarbons probably represent liquids remaining after upward migration to the overlying Guelph-Salina reservoirs. The majority of sphalerite and galena formed during this period, as well as accessory pyrite, marcasite, chalcopyrite, chalcocite, arsenopyrite, and pyrrhotite; and secondary dolomite, calcite, celestite, and gypsum. 2. During the presently ongoing surface erosion and weathering phase, which is marked by the downward movement of groundwater, preexisting sulphides were probably remobilized, and trace amounts of lead and zinc were leached from the host material, by groundwaters. Metal sulphides precipitated at, or below, the water table, or where atmospheric oxygen could raise the Eh of groundwaters to the point where soluble metal complexes are unstable and native sulphur co-precipitates with sphalerite and galena. This process, which can be observed today, also results in the transport and deposition of the host rock material. Breakdown of pre-existing sulphide and sulphate, as well as hydrocarbon present in the host rock, provided sulphur necessary for sulphide precipitation. The galena and sphalerite are accompanied by dolomite, calcite, gypsum, anglesite, native sulphur and possibly zincite.
    • Petrography, geochemistry and structure of the Timmins area, Ontario

      Payne, Craig William Charles.; Department of Earth Sciences (Brock University, 1978-07-09)
      Regional structural analysis of the Timmins area indicates four major periods of tectonic deformation. The DI deformation is characterized by a series of isoclinal FI folds which are outlined in the study area by bedding, pillow tops and variolitic flows. The D2 deformation developed the Porcupine Syncline and refolded the Fl folds about a NE. axis. A pervasive S2 foliation developed during low grade (greenschist) regional metamorphism associated with the D2 deformation. The S2 foliation developed south of the Destor-Porcupine Break. The third phase of tectonic D3 deformation is recognized by the development of a S3 sub-horizontal crenulation cleavage which developed on the plane of the S2 foliation. No meso scopic folds are associated with this deformation. The 8 3 crenulation cleavage is observed south of the Destor-Porcupine Break. The D4 tectonic deformation is recorded as a subvertical S4 crenulation cleavage which developed on the plane of the S2 foliation and also offsets the S3 crenulation cleavage. Macroscopic F4 folds have refolded the F2 axial plane. No metamorphic recrystallization is associated with this deformation. The S4 crenulation cleavage is observed south of the Destor-Porcupine Break. Petrographic evidence indicates that the Timmins area has been subjected to pervasive regional low grade (greenschist) metamorphism which has recrystallized the original mineralogy. South of the study are~ the Donut Lake ultramafic lavas have been subjected to contact medium grade (amphibolite facies) metamorphism associated with the intrusion of the Peterlong Lake Complex. The Archean volcanic rocks of the Timmins area have been subdivided into komatiitic, tholeiitic and calcalkaline suites based on Zr, Ti0 2 and Ni. The three elements were used because of their r e lative immobility during subsequent metamorphic events. Geochemical observations in the Timmins area indicates that the composition of the Goose Lake and Donut Lake Formations are a series of peridotitic, pyroxenitic and basaltic komatiites. The Lower Schumacher Formation is a sequence of basaltic komatiites while the upper part of the Lower Schumacher Formation is an intercalated sequence of basaltic komatiites and low Ti0 2 tholeiites. The variolitic flows are felsic tholeiites in composition and geochemical evidenc e sugg ests that they developed as a n immiscible splitting of a tholeiitic magma. The Upper Schumacher Formation is a sequence of tholeiitic rocks dis p laying a mild iron enrichment. The Krist and Boomerang Formations are the felsic calc-alkaline rocks of the study area which are characteristically pyroclastic. The Redstone Fo rmation is dominantly a calc-alkali ne sequence of volcani c rocks whose minor mafic end me mbers exposed in 1t.he study hav e basaltic komatiitic compositions. Geochemical evidence sugges ts that the Keewatin-type se dimentary rocks have a composition similar to a quartz diorite or a granodiorite. Fi e l d obs ervations and petrographic evidence suggests that they were derived fr om a distal source and now repr esent i n part a turbidite sequence. The Timiskaming-type sedimentary rocks approach the c omp osi t ion of the felsic calc-alkaline rocks of the study area . The basal conglomerate in the study are a sugge s ts that th e uni t was derived fr om a proximal source. Petrographic and ge ochemical evidence suggests that the peridotitic and pyroxenitic komatiites originated as a 35-55% partial melt within the mantle, in excess of 100 Km. depth. The melt ros e as a diapir with the subsequent effusion of the ultramafic lavas, The basaltic komatiites and tholeiitic rocks originated in the mantle from lesser degrees of partial melting and fractionated in low pressure chambers. Geochemical evidence suggests a "genetic link" between the basaltic komatiites and tholeiites, The calc-alkaline rocks developed as a result of the increa.se In PO in the magma chamber. The felsic calcalkaline rocks are a late stage effusion possibly the last major volcanic eruptions in the area.
    • Textual characteristics of coarse sediments in selected streams of the Niagara Peninsula, Ontario

      Fisher, James Edward.; Department of Earth Sciences (Brock University, 1978-07-09)
      The streams flowing through the Niagara Escarpment are paved by coarse carbonate and sandstone sediments which have originated from the escarpment units and can be traced downstream from their source. Fifty-nine sediment samples were taken from five streams, over distances of 3,000 to 10,000 feet (915 to 3050 m), to determine downstream changes in sediment composition, textural characteristics and sorting. In addition, fluorometric velocity measurements were used in conjunction with measured -discharge and flow records to estimate the frequency of sediment movement. The frequency of sediments of a given lithology changes downstream in direct response to the outcrop position of the formations in the channels. Clasts derived from a single stratigraphic unit usually reach a maximum frequency within the first 1,000 feet (305 m) of transport. Sediments derived from formations at the top of waterfalls reach a modal frequency farther downstream than material originating at the base of waterfalls. Downstream variations in sediment size over the lengths of the study reaches reflect the changes in channel morphology and lithologic composition of the sediment samples. Linear regression analyses indicate that there is a decrease in the axial lengths between the intial and final samples and that the long axis decreases in length more rapidly than the intermediate, while the short axis remains almost constant. Carbonate sediments from coarse-grained, fossiliferous units - iii - are more variable in size than fine-grained dolostones and sandstones. The average sphericity for carbonates and sandstones increases from 0.65 to 0.67, while maximum projection sphericity remains nearly constant with an average value of 0.52. Pebble roundness increases more rapidly than either of the sphericity parameters and the sediments change from subrounded to rounded. The Hjulstrom diagram indicates that the velocities required to initiate transport of sediments with an average intermediate diameter of 10 cm range from 200 cm/s to 300 cm/s (6.6 ft./sec. to 9.8 ft./sec.). From the modal velocitydischarge relations, the flows corresponding to these velocities are greater than 3,500 cfs (99 m3s). These discharges occur less than 0.01 p~r cent (0.4 days) of the time and correspond to a discharge occurring during the spring flood.
    • Structural, stratigraphic and geochemical studies of the Horwood Peninsula - Gander Bay Area, Northeast Newfoundland /

      Wu, Tsai-Way.; Department of Earth Sciences (Brock University, 1979-06-29)
      The Horwood Peninsula - Gander Bay area is located at NE Newfoundland in the Botwood Zone (Williams et a1., 1974) or in the Dunnage Zone (Williams, 1979) of the Central Mobile Belt of the Newfoundland Appalachians. The area is underlain by Middle Ordovician to possible Lower Silurian rocks of the Davidsville and Indian Islands Groups, respectively. Three conformable formations named informally : the Mafic Volcanic Formation, the Greywacke and Siltstone Formation and the Black Slate Formation, have been recognized in the Davidsville Group. The Greywacke and the Black Slate Formations pass locally into a Melange Formation. From consideration of regional structure and abundant locally-derived mafic volcanic olisto- 1iths in the melange, it is considered to have originated by gravity sliding rather than thrusting. Four formations have been recognized in the Indian Islands Group. They mainly contain silty slate and phyllite, grey cherty siltstone, green to red micaceous siltstone and limestone horizons. Repetition of lithological units by F1 folding are well-demonstrated in one of formations in this Group. The major structure in this Group on the Horwood Peninsula is interpreted to be a synclinal complex. The lithology of this Group is different from the Botwood Group to the west and is probably Late Ordovician and/or Early Silurian in age. The effects of soft-sediment deformation can be seen from the lower part of the Davidsville Group to the middle part of the Indian Islands Group indicating continuous and/or episodic slumping and sliding activities throughout the whole area. However, no siginificant depOSitional and tectonic break that could be assigned to the Taconian Orogeny has been recognized in this study. Three periods of tectonic deformation were produced by the Acadian Orogeny. Double boudinage in thin dikes indicates a southeast-northwest sub-horizontal compression and main northeast-southwest sub-horizontal extension during the D1 deformation. A penetrative, axial planar slaty cleavage (Sl) and tight to isocJ.ina1 F1 folds are products of this deformation. The D2 and D3 deformations formed S2 and S3 fabrics associated with crenulations and kink bands which are well-shown in the slates and phyllites of the Indian Islands Group. The D2 and D3 deformations are the products of vertical and northeast-southwest horizontal shortening respectively. The inferred fault between the Ordovician slates (Davidsville Group) and the siltstones (Indian Islands Group) suggested by Williams (1963, 1964b, 1972, 1978) is absent. Formations can be followed without displacement across this inferred fault. Chemically, the pillow lavas, mafic agglomerates, tuff beds and diabase dikes are subdivided into three rock suites : (a) basaltic komatiite (Beaver Cove Assemblage), (b) tholeiitic basalt (diabase dikes), (c) alkaline basalt (Shoal Bay Assemblage). The high Ti02 , MgO, Ni contents and bimodal characteristic of the basaltic komatiite in the area are comparable to the Svartenhuk Peninsula at Baffin Bay and are interpreted to be the result of an abortive volcano-tectonic rift-zone in a rear-arc basin. Modal and chemical analyses of greywackes and siltstones show the trend of maturity of these rocks increasing from poorly sorted Ordovician greywackes to fairly well-sorted Silurian siltstones. Rock fragments in greywackes indicate source areas consisting of plagiogranite, low grade metamorphic rocks and ultramafic rocks. Rare sedimentary structures in both Groups indicate a southeasterly provenance. Trace element analyses of greywackes also reveal a possible island-arc affinity.
    • Geology of the Gander Group, Gander River Ultramafic Belt and Davidsville Group in the Jonathan's Pond - Weir's Pond Area, northeast Newfoundland /

      Bazinet, J. Paul.; Department of Earth Sciences (Brock University, 1980-06-09)
      The study area is situated in NE Newfoundland between Gander Lake and the north coast and on the boundary between the Gander and Botwood tectonostratigraphic zones (Williams et al., 1974). The area is underlain by three NE trending units; the Gander Group, the Gander River Ultramafic Belt (the GRUB) and the Davidsville Group. The easternmost Gander Group consists of a thick, psammitic unit composed predominantly of psammitic schist and a thinner, mixed unit of semipelitic and pelitic schist with minor psammite. The mixed unit may stratigraphically overlie the psammitic unit or be a lateral facies equivalent of the latter. No fossils have been recovered from the Gander Group. The GRUB is a terrain of mafic and ultramafic plutonic rocks with minor pillow lava and plagiogranite. It is interpreted to be a dismembered ophiolite in thrust contact with the Gander Group. The westernmost Davidsville Group consists of a basal conglomerate, believed deposited unconformably upon the GRUB from which it was derived, and an upper unit of greywacke and slate, mostly of turbidite origin, with minor limestone and calcareous sandstone. The limestone, which lies near the base of the unit, contains Upper Llanvirn to Lower Llandeilo fossils. The Gander and Davidsville Groups display distinctly different sedimentological , structural and metamorphic histories. The Gander Group consists of quartz-rich, relatively mature sediment. It has suffered three pre-Llanvirn deformations, of which the main deformation, Dp produced a major, NE-N-facing recumbent anticline in the southern part of the study area. Middle greenschist conditions existed from D^ to D- with growth of metamorphic minerals during each dynamic and static phase. In contrast, the mineralogically immature Davidsville Group sediment contains abundant mafic and ultramafic detritus which is absent from the Gander Group. The Davidsville Group displays the effects of a single penetrative deformation with localized D_ and D_ features, all of which can be shown to postdate D_ in the Gander Group. Rotation of the flat Gander S- into a subvertical orientation near the contact with the GRUB and the Davidsville Group is believed to be a Davidsville D^ feature. Regional metamorphism in the Davidsville Group is lower greenschist with a single growth phase, MS . These sedimentological, structural and metamorphic differences between the Gander and Davidsville Groups persist even where the GRUB is absent and the two units are in contact, indicating that the tectonic histories of the Gander and Davidsville Groups are distinctly different. Structural features in the GRUB, locally the result of multiple deformations, may be the result of Gander and/or Davidsville deformations. Metamorphism is in the greenschist facies. Geochemical analyses of the pillow lava suggest that these rocks were formed in a back-arc basin. Mafic intrusives in the Gander Group appear to be the result of magraatism separate from that producing the pillow lava. The Gander Group is interpreted to be a continental rise prism deposited on the eastern margin of the Late Precambrian-Lower Paleozoic lapetus Ocean. The GRUB, oceanic crust possibly formed in a marginal basin to the west, is believed to have been thrust eastward over the Gander Group, deforming the latter, during the pre-Llanvirnian, possibly Precambrian, Ganderian Orogeny. The Middle Ordovician and younger Davidsville Group was derived from, and deposited unconformably on, this deformed terrain. Deformation of the Davidsville Group occurred during the Middle Devonian Acadian Orogeny.
    • An investigation of geological and geochemical characteristics of late-Quaternay sediments in the Georgian Bay Region, Southern Ontario

      Chen, Chang-Sen.; Department of Earth Sciences (Brock University, 1980-07-09)
      Core samples of postglacial sediments and sediment surface samples from Shepherd Lake on the Bruce Peninsula, Harts Lake on the Canadian Shield, and two cores from Georgian Bay (core P-l in the western deep part and core P-7 in the eastern shallow part) have been analyzed for pH, grain size distribution, water content, bulk density, loss on ignition at 4500C and 11000 C, major oxides (Si02 ,A1203,!FeO,MgO,CaO, Na20,K20,Ti02 ,MnO and P205) and trace elements (Ba,Zr,Sr,y,S, Zn,Cu,Ni,Ce and Rb). The sediment in Georgian Bay are generally fine grained (fine silt to very fine silty clay) and the grain size decreases from the Canadian Shield (core p-7) towards the Bruce Peninsula (core P-l) along the assumed direction of sediment transport. This trend coincides with a decrease in sorting coefficient and an increase in roundness. Other physical characteristics, such as water content, bulk density and loss on ignition are positively correlated with the composition of sediments and their compaction, as well as with the energy of the depositional environment. Analyses of sediment surface samples from Shepherd Lake and Harts Lake indicate the influence of bedrock and surficial deposits in the watershed on pH condition that is also influenced by the organic matter content and probably I ! I man's activities. Organic matter content increases significantly in the surface sediment in these small lakes as a result of either natural eutrophication or anthropogenic organic loading. The extremely high organic matter content in Shepherd Lake sediment indicates rapid natural eutrophication in this closed basin and high biological productivity during postglacial time, probably due to high nutrient levels and shallow depth. The chemical composition of the Canadian Shield bedrock is positively correlated with the chemical characteristics of predominantly inorganic lake sediments that were derived from the Shield rocks by glacial abrasion and by postglacial weathering and erosion of both bedrock and surficial deposits. High correlation coefficients were found between organic matter in lake sediments and major oxides (Si02,AI203,.~FeO, MgO,CaO,K20 and MnO) , as well as some trace elements (Ba,Y, S,Zn,Cu,Ni and Rb). The chemical composition of sediments in Harts Lake and core P-7 in Georgian Bay on the Canadian Shield differs from the chemistry of sediments in Shepherd Lake and core P-l in Georgian Bay on the Bruce Peninsula. The difference between cores P-l and P-7 is indicated by values of Si02 , AI203 ,:LFeo,Mgo,CaO,Ba,Zr,Sr,y and S, and also by the organic matter content. This study indicates that the processes of sediment transport, depositional environment, weathering of the rocks and surficial deposits in the watershed, as well as chemical composition of source rocks all affect the chemical characteristics of lake sediments. The stratigraphic changes and variations in lake sediment chemistry with regard to major oxides, trace elements, and organic matter content are probably related to the history of glacial and postglacial lake stages of the Georgian Bay Region and, therefore, the geochemical data can make a useful contribution to a better understanding of the Late-Quaternary history of the Great Lakes.
    • Geology of the Sand Creek porphyry molybdenum prospect /

      Dillon, David Lloyd.; Department of Earth Sciences (Brock University, 1982-06-09)
      The Sand Creek Prospect is located within the eastern exposed margin of the Coast Plutonic Complex. The occurrence is a plug and dyke porphyry molybdenum deposit. The rock types, listed in decreasing age: 1) metamorphlc schists and gneisses; 2) diorite suite rocks - diorite, quartz diorite, tonalite; 3) rocks of andesitic composition; 4) granodiorites, coarse porphyritic granodiorite, quartzfeldspar porphyry, feldspar porphyry; and 5) lamprophyre. Hydrothermal alteration is known to have resulted from emplacement of the hornblende-feldspar porphyry through to the quartz-feldspar porphyry. Molybdenum mineralization is chiefly associated with the quartz-feldspar porphyry. Ore mineralogy is dominated by pyrite with subordinate molybdenite, chalcopyrite, covelline, sphalerite, galena, scheelite, cassiterite and wolframite. Molybdenite exhibits a textural gradation outward from the quartz-feldspar porphyry. That is, disseminated rosettes and rosettes in quartz veins to fine-grained molybdenite in quartz veins and potassic altered fractures to fine-grained molybdenite paint or 6mears in the peripheral zones. The quartz-feldspar porphyry dykes were emplaced in an inhomogeneous stress field. The trend of dykes, faults and shear zones is 0^1° to 063° and dips between 58° NW and 86* SE. Joint Pole distribution reflects this fault orientation. These late deformatior maxima are probably superimposed upon annuli representing diapiric emplacement of the plutons. A model of emplacement involving two magmatic pulses is given in the following sequence: Diorite pulse (i) dioritequartz diorite, (ii) tonalites; granodiorite pulse (iii) hornblende-fildspar microporphyry, hornblende/biotite porphyry, (iv) coarse grained granodiorite, (v) quartz-feldspar porphyry, (vi) feldspar porphyry, and (vii) lamprophyre. The combination of plutonic and coarse porphyritic textures, extensive propylitic overprinting of potassic alteration assemblages suggests that the. prospect represents the lower reaches of a porphyry system.
    • Sedimentology of the Sixteen Mile Creek Lagoon, Niagara Peninsula, Ontario, Canada

      Otto, Judith E.; Department of Earth Sciences (Brock University, 1983-07-09)
      The effec s of relative water level changes in Lake Ontario were detected in the ysical, chemical and biological characteristics of the sediments of the Fifteen, Sixteen and Twenty Mile Creek lagoonal complexes. Regional environmental changes have occurred resulting in the following sequence of sediments in the three lagoons and marsh. From the base up they are; (I) Till,(2) Pink Clay, (3) Bottom Sand, (4) Gyttja, (5) Orange Sandy Silt, (6) Brown Clay and (7) Gray Clay. The till was only encountered in the marsh and channel; however, it is presumed to occur throughout the entire area. The presence of diatoms and sponge spicules, the vertical and ongitudinal uniformity of the sediment and the stratigr ic position of the Pink Clay indicate that it has a glacial or post-glacial lacustrine origin. Overl ng the Pink Clay or Till is a clayey, silty sand to gravel. The downstream fining and unsorted nature of this material indicate that it has a fluvial/deltaic origin. Water levels began rising in the lagoon 3,250 years ago resulting in the deposition of the Gyttja, a brown, organic-rich silty clay probably deposited in a shallow, stagnant environment as shown by the presence of pyrite in the organic material and relatively high proportions of benthic diatoms and grass pollen. Increase in the rate of deposition of the Gyttja on Twenty Mile Creek and a decrease in the same unit on Sixteen Mile Creek is possibly the result of a capture of the Sixteen Mile Creek by the Twenty Mile Creek. The rise in lake level responsible for the onset and transgression of this III unit may have been produced by isostatic rebound; however, the deposition also corresponds closely to a drop in the level of Lake Huron and increased flow through the lower lakes. The o ange Sandy Silt, present only in the marsh, appears to be a buried soil horizon as shown by oxidized roots, and may be the upland equivalant to the Gyttja. Additional deepening resulted in the deposition of Brown Clay, a unit which only occurs at the lakeward end of the three lagoons. The decrease in grass pollen and the relatively high proportion of pelagic diatoms are evidence for this. The deepening may be the result of isostatic rebound; however, the onset of its deposition at 1640 years B.P. is synchronous in the three lagoons and corresponds to the end of the subAtlantic climatic episode. The effects of the climatic change in southern Ontario is uncertain. Average deposition rates of the Brown Clay are similar to those in the upper Gyttja on Sixteen Mile Creek; however, Twenty Mile Creek shows lower rates of the Brown Clay than those in the upper Gyttja. The Gray Clay covers the present bottom of the three lagoons and also occurs in the marsh It is inter1aminated wi sand in the channels. Increases in the rates of deposi ion, high concentrations of Ca and Zn, an Ambrosia rise, and an increase in bioturbation possibly due to the activities of the carp, indicate th this unit is a recent deposit resulting from the activities of man.
    • Quaternary geology of the Campbellford, Trenton, Consecon, Tweed, Belleville, Wellington, Sydenham, Bath, and Yorkshire Island map-areas, Ontario /

      Leyland, James G.; Department of Earth Sciences (Brock University, 1984-06-01)
      Sediment relationships observed during geological mapping in southeastern Ontario indicate a relatively simple deglaciation history for the area during late Wisconsin time. The ice from the north (part of the Lake Simcoe lobe) and the Lake Ontario ice lobe, which were coalesced during most of late Wisconsin time, initially separated along the crest of the Oak Ridges Moraine. Available data indicate that the Oak Ridges Moraine is composed primarily of sediments pre-late Wisconsin in age capped by late Wisconsin till and interlobate deposits. Retreat of the northern ice was relatively steady and resulted in the deposition of the Dummer Moraines, a facies of the drumlinized till to the south. Retreat of the Lake Ontario ice lobe into the Lake Ontario basin was interrupted by a re-advance which covered the southeastern half of the map area. The northern ice had already retreated from the area by this time. The Lake Ontario lobe was fed through the St. Lawrence Valley, indicating that the Ottawa Valley was ice filled at this time. High level glacial lakes fronted the ice during deglaciation. These waters quickly fell to low levels as the ice retreated from the St. Lawrence Valley, opening lower outlets.