• Variational Monte Carlo study of core-valence separation schemes for first-row atoms and positive ions /

      Staroverov, Viktor N.; Department of Chemistry (Brock University, 1997-05-19)
      All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.
    • The versatility and utilization of phosphorus based compounds in classic carbon-carbon bond forming and esterification reactions

      Dyck, Jeffrey C. H.; Department of Chemistry (Brock University, 2003-07-09)
      The phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) has been employed as an efficient reusable media for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts ofwater and toluene (single phase) using potassium phosphate and 1% Pd2(dba)3'CHCI3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and were all complete within 1 hour at 50°C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70°C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system, from which the catalyst was then recycled by removing the top (hexanes) and bottom (aqueous) layers and adding the reagents to the ionic liquid which was heated again at 50°C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences. IL ESTERIFICATIONREACTION A new class oftrialkylphosphorane has been prepared through reaction of a trialkylphosphine with 2-chlorodimethylmalonate in the presence oftriethylamine. These new reagents promote the condensation reaction of carboxylic acids with alcohols to provide esters along with trialkylphosphine oxide and dimethylmalonate. The condensation reaction of chiral secondary alcohols can be controlled to give either high levels of inversion or retention through a subtle interplay involving basicity of the reaction media, solvent, and tuning the electronic and steric nature of the carboxylic acid and stenc nature of the phosphorane employed. A coherent mechanism is postulated to explain these observations involving reaction via an initial acyloxyphosphonium ion.
    • The vibrational spectra and the normal coordinate analysis of thiocarbonye halides /|nby C. R. Subramaniam. -- 260 St. Catharines, Ont. : [s. n.],

      Subramaniam, Chandrasekarapuram Ramaswamy.; Department of Chemistry (Brock University, 1969-07-09)
      The infrared and the Raman spectra of eSelF has been obtained for the first time and has been analysed to give the in-plane normal vibrational frequencies of the molecule, in the ground state. A normal co-ordinate analysis has been carried out for the molecules CSF2, CSClF and eSel 2 using a Urey-Bradley type of potential function and the elements of the [L] matrix elements, the distribution of the potential energy in Urey-Bradley space, and the displacement vector diagrams for the normal modes of vibration for these molecules, have been obtained. The bond for~e constants obtained through the normal co-ordinate analysis, have given some interesting results. The stretching force constant, Kes ' varies markedly with halogen substitution and the force constants KeF and Keel also vary with substitution.