• Biotransformation of polycylic aromatic compounds by fungi and an investigation into the oxidation of alkylbenzenes by Mortierella isabellina NRRL 1757

      Khan, Shaheer Hasan.; Department of Chemistry (Brock University, 1985-07-09)
      Incubations of several polycyclic heteroaromatic compounds and two polycyclic aromatic hydrocarbons with a series of common fungi have been performed. The fungi Cunninghamella elegans ATCC 26269, Rhizopus arrhizus ATCC 11145, and Mortierella isabellina NRRL 1757 were studied in this regard. Of the aza heteroaromatics, only dibenzopyrrole gave a ring hydroxylated product following the incubation with C. elegans. From the thio heteroaromatics studied, dibenzothiophene was metabolized by all the three fungi and thioxanthone by C. elegans and M. isabellina giving sulfones and sulphoxides. Thiochromanone was metabolized stereoselectively to the corresponding sulphoxide by C. elegans. Methyl substituted thioxanthones on incubation with C. elegans produced oxidative products, arising from S -oxidation and hydroxylation at the methyl group. Of the cyclic ketones studied, only fluorenone was reduced to hydroxyfluorene and this metabolism is compared with that reported with cytochrome P-450 monooxygenases of hepatic microsomes. A series of para-substituted ethylbenzenes has been transformed stereoselectively to the 1-phenylethanols by incubation with M. isabellina. Comparisons of the enantiomeric purities obtained from products with their respective para substituent of the same steric size but different electronic properties indicate that the stereoselectivity of hydroxylation at benzylic carbon may be susceptible to electron donating or withdrawing factors in some cases, but that observation is not va lid in all the comparisons. The stereochemistry of the reaction is discussed in terms of three possible steps, ethylbenzene ---) 1-phenylethanol ---) acetophenone ---) 1-phenylethanol. This metabolic pathway could account for the inconsistencies observed in the comparisons of optical purities and electronic character of para substituents. Furthermore, formation of 2-phenylethanol (in some cases), l-(p-acetylphenyl)ethanol from p-diethylbenzene, and N-acetylation of p-ethylaniline was observed. n-Propylbenzene was also converted to optically active 1-phenylpropanol. Acetophenone, p-ethylacetophenone, and o(,~,~-trifluoroacetophenone were transformed to 1-phenylethanol, l-(p-ethylphenyl)ethanol, and 1-phenyl-2,2,2-trifluoroethanol, respectively, with high chemical and excellent optical yields. The 13 C NMR spectra of several substrates and metabolic products have been reported and assigned for the first time.
    • An investigation into the oxidation of organic sulphides, organic selenides and simple hydrocarbons by Mortierella isabellina NRRL 1757

      Carter, Ian M.; Department of Chemistry (Brock University, 1983-07-09)
      The work presented in this thesis is divided into three separate sections 4!> Each' 'section is involved wi th a different problem, however all three are involved with a microbial oxidation of a substrate~ A series of 'aryl substituted phenyl a.nd be,nzyl methyl sulphides were oxidized to the corre~pondi~g sulphoxides by 'Mo:rtierellai's'a'b'e'llina NRR.L17'S7 @ For this enzymic Qxidation, based on 180 labeled experiments, the oxygen atom is derived fr'orn the atmosphere and not from water. By way of an u~.traviolet analysis, the rates of oxidation, in terms of sulphox~ de appearance, were obtained and correlated with the Hatnmett p s~grna constants for the phenyl methyl sulphide series. A value of -0.67 was obtained and, is interpreted in terms of a mechanism of oxidation that involves an electrophilic attack on the sulphide sulphur by an enzymic ironoxygen activated complex and the conversion of the resulti!lg sulphur cation to sulphoxide. A series of alkyl phenyl selen~des have been incubated with the fu~gi, Aspergillus niger ATCC9l42, Aspergillus fO'etidus NRRL 337, MIIJisabellina NF.RLl757 and'He'lminth'osparium sp'ecies NRRL 4671 @l These fu?gi have been reported to be capable of carrying out the efficient oxidation of sulphide to sulphoxide, but in no case was there any evidence to supp'ort the occurrence of a microbialox,idation. A more extensive inves·t~gation was carried out with'M,e 'i's'a'b'e'l'l'i'na, this fu~gus was capable of oxidizing the correspondi~g sulphides to sulphoxi.de·s·$ Usi:ng a 1abel.edsubstra.te, [Methyl-l4c]-methyl phenyl selenide, the fate of this compound was invest~gated followi!lg an i'ncubation wi th Me isabellina .. BeSUldes th. e l4C-ana1YS1Q S-,'. a quant"ltta"lve selen'lum ana1Y"S1S was carried out with phenyl methyl selenide. These techniques indicate that thesel'enium was capable of enteri!1g thefu!1gal cell ef'ficiently but that s'ome metabolic cleav~ge of the seleni'um-carbon bond' may take plac'e Ie The l3c NMR shifts were assigned to the synthesized alkyl phenyl sulphides and selenides@ The final section involved the incubation ofethylben~ zene and p-e:rtr.hyltoluene wi th'M ~ 'isab'e'llina NRRL 17574b Followi~ g this incubation an hydroxylated product was isolated from the medium. The lH NMR and mass spectral data identify the products as I-phenylethanol and p-methyl-l-phenylethanol. Employi!lg a ch'iral shift re~gent,tri~ (3-heptafluorobutyl-dcamphorato)'- europium III, the enantiomeric puri ty of these products was invest~gated. An optical rotation measurement of I-phenylethanol was in ~greement with the results obtained with the chiral shift re~gen,te 'M.isabe'l'lina is capable of carryi~g out an hydroxylation of ethylbenzene and p-ethyltoluene at the ~ position.
    • Kinetic and mechanistic studies for the molybdenum- catalyzed oxidation of organic sulfides and olefins by t- DuO2H

      Koseoglu, Omer Refa; Department of Chemistry (Brock University, 1982-07-09)
      This research was focussed on the effects of light, solvent and substituents in the molybdenum-catalyzed oxidation of phenylmethyl sulfides with t-Bu02H and on the effect of light in the molybdenum-catalyzed epoxidation of l-octene with t-Bu02H. It was shown that the Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide with t-Bu02H~ at 35°C, proceeds 278 times faster underUV light than under laboratory lighting, whereas the Mo02(acac)2-catalyzed oxidation proceeds only 1.7 times faster under UV light than under normal laboratory lighting. The difference between the activities of both catalysts was explained by the formation of the catalytically active species, Mo(VI). The formation of the Mo(VI) species, from Mo(CO)6 was observed from the IR spectrum of Mo(CO)6 in the carbonyl region. The Mo(CO)6-catalyzed epoxidation of l-octene with t-Bu02H showed that the reaction proceeded 4.6 times faster under UV light than in the dark or under normal laboratory lighting; the rates of epoxidations were found to be the same in the dark and under normal laboratory lighting. The kinetics of the epoxidations of l-octene with t-Bu02H, catalyzed by Mo02(acac)2 were found to be complicated; after fast initial rates, the epoxidation rates decreased with time. The effect of phenylmethyl sulfide on the Mo(CO)6-catalyzed epoxidation of l-octene waS studied. It was shown that instead of phenylmethyl sulfide, phenylmethyl sulfone, which formed rapidly at 85°C, lowered the reaction rate. The epoxidation of l-octene was found to be 2.5 times faster in benzene than in ethanol. The substituent effect on the Mo02(acac)2-catalyzed oxidations of p-OH, p-CHgO, P-CH3' p-H, p-Cl, p-Br, p-CHgCO, p-HCO and P-N02 substituted phenylmethyl sulfides were studied. The oxidations followed second order kinetics for each case; first order dependency on catalyst concentration was also observed in the oxidation of p-CHgOPhSMeand PhSMe. It was found that electron-donating groups on the para position of phenylmethyl sulfide increased the rate of reaction, while electronwithdrawing groups caused the reaction rate to decrease. The reaction constants 0 were determined by using 0, 0- and 0* constants. The rate effects were paralleled by the activation energies for oxidation. The decomposition of t-Bu02H in the presence of M.o (CO)6, Mo02 (acac)2 and VO(acac)2 was studied. The rates of decomposition were found to be very small compared to the oxidation rates at high concentration of catalysis. The relative rates of the Mo02(acac)2-catalyzed oxidation of p-N02PhSMe by t-Bu02H in the presence of either p-CH30PhSMe or PhSMe clearly show that PhSMe and p-CHgOPhSMe act as co-catalysts in the oxidation of p-N02PhSMe. Benzene, mesity1ene and cyclohexane were used to determine the effect of solvent in the Mo02 (acac)2 and Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide. The results showed that in the absence of hydroxylic solvent, a second molecule of t-Bu02H was involved in the transition state. The complexation of the solvent with the catalyst could not be explained.The oxidations of diphenyl sulfoxide catalyzed by VO(acac)2, Mo(CO)6 and Mo02(acac)2 showed that VO(acac)2 catalyzed the oxidation faster than Mo(CO)6 and Mo02 (acac)2_ Moreover, the Mo(CO)6-catalyzed oxidation of diphenyl sulfoxide proceeded under UV light at 35°C.
    • Kinetic and product studies for the oxidtion of organic sulfides and sulfoxides in the presence of transition metal complexes

      Koseoglu, Semih Sefa.; Department of Chemistry (Brock University, 1980-10-02)
      Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.
    • Kinetic studies of the effect of organic sulphides on the oxidation of other sulphides /

      Aryitey, George Tetteh Magnus.; Department of Chemistry (Brock University, 1984-06-04)
      The rates of oxidation of three Organic sulphides viz. methyl phenyl sulphide, (P), p -me thoxyphenyl methyl sulphide (M) and methyl p-nitrophenyl sulphide (N). have been obtained in ethanol using MoO-(acac)- as catalyst and Bu OOH as the oxidizing agent. A Hammett plot gave a rho value of -2.1 and the activation energies for the oxidation of P, M and N were estimated to be 63.60, 40.12 and 197.46 Kj mol respectively. The effect of organic sulphide on the oxidation of another sulphide was also ascertained. Positive and negative deviations were observed from the expected slope.