• The importance of hydrogen bonding in the alkylation of phenols

      Alauddin, Mian Mohannad.; Department of Chemistry (Brock University, 1982-07-09)
      Hydrogen bond assisted alkylation of phenols is compared with the classical base assisted reactions. The influence of solvents on the fluoride assisted reactions is discussed,· with emphasis on the localization of hydrogen bond charge density. Polar aprotic solvents such as DMF favour a-alkylation, and nonpolar aprotic solvents such as toluene favourC-alkylation of phenol. For more reactive and soluble fluorides, such as tetrabu~ylammoniumfluoride, the polar aprotic solvent favours a-alkylation and nonpolar aprotic solvent favours fluorination. Freeze-dried potassium fluoride is a better catalytic agent in hydrogen bond assisted alkylation reactions of phenol than the oven-dried fluoride. The presence of water in the alkylation reactions reduces the expected yield drastically. The tolerance of the reaction to water has also been studied. The use ofa phase transfer catalyst such as tetrabutylammonium bromide in the alkylation reactions of phenol in the presence of potassium fluoride is very effective under anhydrous conditions. Sterically hindered phenols such as 2,6-ditertiarybutyl-4-methyl phenol could not be alkylated even by using the more reactive fluorides, such as tetrabutylammonium fluoride in either polar or nonpolar aprotic solvents. Attempts were also made to alkylate phenols in the presence of triphenylphosphine oxide.
    • Sol-gel routes to supported Friedel-Crafts alkylation catalysts

      Goodchild, Mary E.; Department of Chemistry (Brock University, 1998-07-09)
      Aluminosilicate catalysts containing supported ZnCl2 and metal fluoride salts have been prepared using a sol-gel based route, tested and characterized. The activities of these ZnCl2 + metal fluoride catalysts, while greater than "Clayzic" (ZnCI2 supported on montmorillonite KIO) are not as good as supported ZnCl2 only supported on aluminosilicate. Alumina supports have also been prepared via a sol-gel route using various chemical additives to generate a mesoporous structure, loaded with ZnCl2 and tested for activity. The activities for these alumina-supported catalysts are also significantly higher than that of "Clayzic", an effective Friedel-Crafts catalyst. Characterizations of these two types of catalysts were done by magic angle spinning (MAS) NMR, diffuse reflectance infrared (DRIFT) spectroscopy and additionally for the alumina nitrogen adsorption studies were done. Supported aluminum trichloride was also investigated as an alternative to the traditional use of aluminum trichloride.