• Magnetically Interesting Coordination Complexes Based on Macrocyclic Ligands

      Ras Ali, Zineb; Department of Chemistry
      The synthesis and study of select 3d and/or 4f coordination complexes prepared from crown ether and Schiff-base dual compartmental macrocycles are described herein, working towards the discovery and study of new families of macrocyclic-based single molecule magnets (SMMs). Chapter 1 introduces the general theory of magnetism, molecular magnetism and SMMs and provides the reader with a brief overview of the relevant coordination chemistry of the two families of macrocycles. In Chapter 2, two 15-crown-5 complexes [Ln(NO3)3(OH2)2(MeOH)], (where Ln(III) = Tb (I) and Dy (II)) have been prepared and characterized. X-ray diffraction studies reveal the two complexes crystallize as 1-D chains. Variable temperature ac magnetic susceptibility studies reveal that (II) is an SMM with two effective energy barriers, Ueff = 26 K (18 cm−1); τ0 = 4.10 × 10−7 s and Ueff = 41 K (29 cm−1); τ0 = 1.35 × 10−8 s, whereas ab initio studies suggest that the observation of slow relaxation of magnetization in the Tb complex (I) is hindered by the presence of rapid quantum tunneling mechanisms (QTM). Solid state photoluminescence measurements reveal the two complexes have well-resolved f–f transitions, where a Gaussian fit of the fine structure of the highest-energy emission band for the Dy(III) complex allows the Stark splitting of the ground state to be determined. In Chapter 3, select Ln(III) complexes with benzo and dibenzo 15-crown-5 macrocycles were synthesized and characterized. Reaction of Dy(III) together with benzo 15-crown-5 afforded a unique [Dy(OH2)8]3+ complex (III), where the hydrated Dy(III) cation is fully encapsulated within a supramolecular cage formed by three benzo 15-crown-5 macrocycles. Interestingly, the close to perfect square antiprismatic geometry of the 4f ion enhances its axial anisotropy, which suppresses quantum tunnelling mechanisms (QTM) in the ground and first excited states, resulting in the observation of SMM behavior in zero dc field. For this system the magnetic data were further supported by solid-state photoluminescence and ab initio studies, The introduction of a second benzene ring into the organic framework of the macrocycle increases its rigidity, where on coordination to Dy(III), affords the partially encapsulated complex (IV), which displays slow relaxation of magnetisation, consistent with SMM properties. In Chapter 4, the coordination chemistry of a dual compartmental Schiff-base macrocycle H2L3 containing O3O2 and N3O2 cavities was explored together with select 3d and 4f ions. In the first part of this chapter, the coordination chemistry of H2L3 with 3d metal ions is presented, where in the presence of NaOH, the Na(I) ions reside in the O3O2 cavity and the 3d ions occupy the second N3O2 cavity. Three coordination complexes containing Cu(II), Zn(II), and Mn(II) ions were prepared and characterized. The Cu(II), and Zn(II) complexes are monomeric with molecular formulae [CuNa(L3b)ClCH3OH]‧6H2O (V) and [ZnNa(L3b)(CH3COO)(CH3OH)]‧H2O (VI) respectively, while the Mn(II) complex crystallizes as a trimer with stoichiometry [Mn3Na2(L3)2(CH3COO)4]·5.75CH3OH·0.5H2O (VII). For complexes (V) and (VI), nucleophilic addition of the NH of the N3O2 cavity to the carbon atom of the adjacent imine results in a contraction of the N3O2 cavity and the formation of a five-membered imidazoline ring to afford the modified ligand L3b.The magnetic properties of (V) and (VII) are also reported. In the second part of this chapter, coordination of the macrocycle to select 4f ions in the absence of any base afforded the mononuclear complexes [Dy(H2L3)(H2O)2(CH3OH)2]Cl3·CH3OH, (VIII), and [Ln(H2L3)(H2O)3(CH3OH)] Cl3, where Ln(III) = Tb (IX), Er (X), and Gd (XI), in which the Ln(III) ion is coordinated in the O3O2 cavity. Magneto-structural studies on these complexes reveal that the Dy complex has a slightly different structure than the other three complexes, however all four 4f ions crystallize with square antiprismatic geometries, where only the Dy(III) complex (VIII) displays SMM properties.