• Phage-mediated biological control of Erwinia amylovora: The role of CRISPRs and exopolysaccharide

      Yagubi, Abdelbaset; Department of Biological Sciences
      Fire blight, caused by bacterium Erwinia amylovora, is a very serious disease affecting apple, pear and other fruit plants. The development of phage-based biopesticides is currently in progress in our lab. Emergence of phage-resistant bacteria is a valid concern. Two attributes of the bacterial host that may contribute to the development of resistance were studied, the Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR-associated (CRISPR/Cas) system and exopolysaccharide (EPS) interaction with phages. The structure of E. amylovora CRISPR/Cas system was determined in 8 E. amylovora isolates from different geographical regions. Three CRISPR-array sets named CR1, CR2 and CR3 were detected in 4 isolates, and only 2 arrays were determined in the rest of the isolates. No significant similarity was found between spacers in any of these systems to phage DNA sequenced in this study or from GenBank. Also the Cas level of expression was not stimulated during phage infection. Introduction of extra copies of Cas genes to enhance expression did not result in phage resistance. Nevertheless, E. amylovora CRISPR/Cas system was found to be efficient in blocking the transformation of plasmids carrying protospacers matched spacers in CRR1 and CRR2. Among phages that have been sequenced in this study are ΦEa9-2 and ΦEa35-70. ΦEa9-2 (Podoviridae) genome is 75,568 bp, and found to be related to coliphage N4. ΦEa35-70 (Myoviridae) genome is 271,084 bp, and found to carry a potential EPS depolymerase gene. Activity of ΦEa35-70 EPS depolymerase was only detected when cloned and expressed in E. coli, but His-tagged purified protein did not exhibit any EPS-depolymerase activities. This study offers critical information for the design of novel and effective phage-based biopesticides for the control of E. amylovora. It provides a new knowledge on the molecular structure and function of CRISPR/Cas system and EPS-phage interaction.
    • Proximate influence on eusocial caste behaviour

      Awde, David N; Department of Biological Sciences
      Queens and workers of eusocial sweat bee species are morphologically and developmentally similar, which means that each female is capable of behaving as a queen or a worker. However, few females lay eggs and behave as queens, while the majority of females provision the queen’s offspring, rarely lay eggs, and behave as workers. This makes eusocial sweat bee species, such as Lasioglossum laevissimum, excellent models to study the underling environmental (social) and genetic factors that contribute to variation in caste behaviours. My research focused on describing some of the proximate mechanisms that influence caste behaviours in L. laevissimum females. The social environment of a sweat bee colony, specifically the behaviour of a queen, can have a dramatic impact on worker behaviour. Queens suppress worker reproduction by physically bullying their workers. In a nesting aggregation at Brock University, almost half of L. laevissimum nests became queenless, which provided me with a natural experiment to assess the direct influence by queens on worker behaviour. Dissection data showed that a small proportion (17%) of workers developed their ovaries in both queenright and queenless nests. This suggests that L. laevissimum queens exert an early, negative, and strong influence on worker egg-laying behaviour, which lasts after she is gone. Next I assessed the relationship between gene expression and L. laeivsismum caste behaviours. I predicited that queens would express a gene associated with egg-laying, vitellogenin, more than workers, and that workers would express genes associated with foraging, the foraging gene, more than queens. Lasioglossum laevissimum queens had higher vitellogenin expression levels than workers, and females with high ovarian development had high vitellogenin expression, regardless of caste. On the other hand, queens and workers had similar foraging expression levels. Gene expression comparisons between queens and workers highlight two important behavioural characteristics of sweat bee castes. First, in eusocial sweat bees, both queens and workers actively provision brood at some point during the breeding season, which is reflected in their similar foraging expression levels. Secondly, queens lay eggs while a small proportion of workers have queen-like ovarian development, reflected in vitellogenin expression differences between castes.
    • Responses to Reflection in Two Invertebrate Species

      May, Holly; Department of Biological Sciences
      The present thesis investigates the responses to reflection in both the crayfish Procambarus clarkii and the fruit fly Drosophila melanogaster. Responses to reflection in crayfish depend on social status and the current work suggests that learning and memory consolidation are required for these responses to be altered. Crayfish were treated to either massed or spaced training fights prior to reflection testing. The results show that subordinate crayfish treated to spaced training display a response typical of subordinate crayfish but subordinate crayfish treated to massed training exhibit a response typical of dominant crayfish. Fruit flies are shown to be attracted to reflection and responses to reflection are described here for the first time. Responses in fruit flies are shown to be dependent on social status. The frequency of behaviours were altered in isolated flies but not socialized flies. The addition of pheromones cVA and 7,11-HD were used to investigate how the addition of chemical cues altered responses to reflection in fruit flies. Socialized fruit flies treated with cVA exhibited an increase in the frequency of behaviours on both mirrored and clear glass walls, while isolated flies exhibited a decrease. Socialized flies treated with 7,11-HD spent more time on mirrored walls compared to glass walls, whereas the frequency of all behaviours were decreased in isolated flies treated with 7,11-HD.
    • The role of microRNAs and retinoid signaling during spinal cord regeneration in the adult newt.

      Lepp, Amanda; Department of Biological Sciences
      The molecular events after spinal cord injury that lead to the establishment of a permissive environment and epimorphic regeneration remain unclear. Two molecular pathway regulators that may converge to create a spinal cord regeneration-permissive environment in the urodele are retinoic acid (RA) and microRNAs (miRNAs). Recent evidence suggests that RARβ-mediated signaling is necessary for tail and caudal spinal cord regeneration in the adult newt. MicroRNAs are attractive candidates as mediators of retinoid signaling during regeneration, as their pleiotropic effects are vital in situations where global changes in gene expression are required. Thus, the overall aim of this thesis was to determine if miRNAs are involved in tail and caudal spinal cord regeneration in the adult newt, and if they act as regulators and/or effectors of retinoid signaling during this process. I have demonstrated here, for the first time, that multiple miRNAs are dysregulated in response to spinal cord injury in the adult newt, as well as in response to inhibition of retinoid signaling. Two of these miRNAs, miR-133a and miR-1, appear to target RARβ2 transcripts both in vivo and in vitro. Inhibition of RA signaling via RARβ with a selective antagonist, LE135, alters the pattern of expression of these miRNAs, which leads to an inhibition of tail regeneration. These data are indicative of a negative feed back loop, albeit potentially an indirect one. I also aimed to examine which miRNAs are affected by inhibiting RA synthesis during regeneration, and provided a long list of miRNAs that are dysregulated. These data provide the foundation for future studies on the putative roles of these miRNAs, as well as their function in retinoid signaling. Overall, these studies provide the first evidence for a role for miRNAs as mediators of retinoid signaling during caudal spinal cord regeneration in any system.
    • The role of mobile elements in recent primate genomes

      Tang, Wanxiangfu; Department of Biological Sciences
      Mobile elements (MEs), which constitute ~50% of the primate genomes, have contributed to both genome evolution and gene function as demonstrated by ample evidence discovered over the last few decades. The three studies in this thesis aims to provide a better understanding of the evolutionary profile and function of MEs in the primate genomes by taking a computational comparative genomics approach. The first study represents a comprehensive analysis of the differential ME transposition among primates via identification of species-specific MEs (SS-MEs) in eight primate genomes from the families of Hominidae and Cercopithecidae using a comparative genomics approach. In total, 230,855 SS-MEs are identified, which reveal striking differences in retrotransposition level in the eight primate genomes. The second study represents a more focused analysis for the identification of a new type of MEs, which we term “retro-DNA” for non-LTR retrotransposons derived from DNA transposons, in the recent primate genomes. By investigating biallelic DNA transposons that have both the insertion and pre-integration alleles in ten primate genomes, a total of 1,750 retro-DNA elements representing 750 unique insertion events are reported for the first time. The third study provides an analysis of the mechanism underlying the differential SINE transposition in the primate genomes. In this study, Alu profiles are compared and the Alu master copies are identified in six primate genomes in the Hominidae and Cercopithecidae groups. The results show that each lineage of the primates and each species owns a unique Alu profile exclusively defined by the AluY transposition activity, which is determined by the number of Alu master copies and their relative activity. Overall, work in this thesis provides new insights about MEs and their impact on the recent primate genomes by revealing differential ME transposition as an important mechanism in generating genome diversity among primate lineages and species through discovering a new type of MEs and preliminary analysis of the mechanism underlying the differential ME transposition among primates. Furthermore, taking advantage of the recently available primate genomes and transcriptomes data, the work in this thesis demonstrates the great potential of the comparative genomic approach in studying MEs in primate genomes.
    • The role of retinoic acid in long-term memory formation and synaptic plasticity in the mollusc Lymnaea stagnalis

      Rothwell, Cailin; Department of Biological Sciences (Brock University, 2015-02-04)
      The active metabolite of vitamin A, retinoic acid (RA), is involved in memory formation and hippocampal plasticity in vertebrates. A similar role for retinoid signaling in learning and memory formation has not previously been examined in an invertebrate species. However, the conservation of retinoid signaling between vertebrates and invertebrates is supported by the presence of retinoid signaling machinery in invertebrates. For example, in the mollusc Lymnaea stagnalis the metabolic enzymes and retinoid receptors have been cloned from the CNS. In this study I demonstrated that impairing retinoid signaling in Lymnaea by either inhibiting RALDH activity or using retinoid receptor antagonists, prevented the formation of long-term memory (LTM). However, learning and intermediate-term memory were not affected. An additional finding was that exposure to constant darkness (due to the light-sensitive nature of RA) itself enhanced memory formation. This memory-promoting effect of darkness was sufficient to overcome the inhibitory effects of RALDH inhibition, but not that of a retinoid receptor antagonist, suggesting that environmental light conditions may influence retinoid signaling. Since RA also influences synaptic plasticity underlying hippocampal-dependent memory formation, I also examined whether RA would act in a trophic manner to influence synapse formation and/or synaptic transmission between invertebrate neurons. However, I found no evidence to support an effect of RA on post-tetanic potentiation of a chemical synapse. Retinoic acid did, however, reduce transmission at electrical synapses in a cell-specific manner. Overall, these studies provide the first evidence for a role of RA in the formation of implicit long-term memories in an invertebrate species and suggest that the role of retinoid signaling in memory formation has an ancient origin.

      Mansour, Hayam; Department of Biological Sciences (Brock University, 2012-06-04)
      Hepatitis C virus (HCV) is the causative agent of Hepatitis C, a serious global health problem which results in liver cirrhosis and hepatocellular carcinoma. Currently there is no effective treatment or vaccine against the virus. Therefore, development of a therapeutic vaccine is of paramount importance. In this project, three alternative approaches were used to control HCV including a DNA vaccine, a recombinant viral vaccine and RNA interference. The first approach was to test the effect of different promoters on the efficacy of a DNA vaccine against HCV. Plasmids encoding HCV-NS3 and E1 antigens were designed under three different promoters, adenoviral E1A, MLP, and CMV ie. The promoter effect on the antigen expression in 293 cells, as well as on the antibody level in immunized BALB/c mice, was evaluated. The results showed that the antigens were successfully expressed from all vectors. The CMV ie promoter induced the highest antigen expression and the highest antibody level. Second, the efficiency of a recombinant adenovirus vaccine encoding HCV-NS3 was compared to that of a HCV-NS3 plasmid vaccine. The results showed that the recombinant adenovirus vaccine induced higher antibody levels as compared to the plasmid vaccine. The relationship between the immune response and miRNA was also evaluated. The levels of mir-181, mir-155, mir-21 and mir-296 were quantified in the sera of immunized animals. mir-181 and mir-21 were found to be upregulated in animals injected with adenoviral vectors. Third, two recombinant adenoviruses encoding siRNAs targeting both the helicase and protease parts of the NS3 region were tested for their ability to inhibit NS3 expression. The results showed that the siRNA against protease was more effective in silencing the HCV-NS3 gene in a HCV replicon cell line. This result confirmed the efficiency of adenovirus for siRNA delivery. These results confirmed that CMV ie is optimum promoter for immune response induction. Adenovirus was shown to be an effective delivery vector for antigens or siRNAs. In addition, miRNAs were proved to be involved in the regulation of immune response.