• Adenovirus-based exogenous gene expression in mammalian cells

      El-Mogy, Mohamed A. (St. Catharines, Ont. : Brock University, Dept. of Biological Sciences, 2010., 2010-03-10)
      Adenoviruses have been used as a model system for understanding gene expression, DNA replication, gene delivery and other molecular biological phenomenon. In this project, adenovirus was used as a model to study exogenous gene expression in mammalian cells. More specifically, several adenoviral components were identified to enhance gene expression together with components needed for viral DNA replication. The adenoviral elements that enhance gene expression were assembled in an expression vector (pEl). These include the viral inverted terminal repeats (ITRs), the El region, the major late promoter (MLP) and the tripartite leader sequence (TPL). The green florescence protein (GFP) was used as a reporter gene. Various aspects of gene expression were examined including DNA delivery and stability inside the cells as well as mRNA transcription and protein expression. First, the effect of DNA quality on its delivery, stability and expreSSIOn III mammalian cells was studied. Five different conditions of the major DNA contaminants were used in this investigation including ethidium bromide (EtBr) , cesium chloride (CsCl), EtBr/CsCl, endotoxins and ethanol. CsCl, EtBr/CsCl and endotoxins affected the delivery process while EtBr affected the expression process but not the delivery. The used EtOH had no significant effect on both. In addition, the effect of all the contaminants was reversible. Next, we looked at the factors that enhance mRNA transcription and translation levels. Three approaches were tested, the first was the co-transfection of pEl and a plasmid that contains adenoviral genes involved in replication (PE2: contains E2 and viral protease). The second was the establishment of a cell line expressing these adenoviral genes involved in replication and the third approach was the super-infection with the wild type adenovirus. The co-transfection did not show any significant increase in gene expression or vector stability. On the other hand, the construction of CHO-E2 cell lines yielded five cell lines but none of them showed expression of all the integrated adenoviral E2 genes or enhancement of stability. Adenoviral super-infection enhanced gene expression. CHO cells showed higher enhancement in intensity and time than human embryonic kidney (HEK) 293 cells. In addition, such enhancement was dependent on the multiplicity of infection (MOl). Finally, this study emphasizes the importance of DNA quality on gene expression. However, the use of adenoviral elements to enhance exogenous gene expression is successful only when the complementary viral proteins and sequences are present. Active expression of the adenoviral proteins does not depend on a few major elements, but depends on the combination of different elements that work in cis or trans to activate gene expression.
    • Aspects of spatial and habitat ecology of multiple Anopheles species (Diptera: Culicidae): malaria vectors in the highlands and foothills of Ecuador

      Pinault, Lauren; Department of Biological Sciences (2012-07-30)
      The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.
    • Aspergillus flavus infections in Galleria mellonella : a pathogen-host model system for the study of emerging diseases

      Scully, Lisa R.; Department of Biological Sciences (Brock University, 2007-05-28)
      To study emerging diseases, I employed a model pathogen-host system involving infections of insect larvae with the opportunistic fungus Aspergillus flavus, providing insight into three mechanisms ofpathogen evolution namely de novo mutation, genome decay, and virulence factoracquisition In Chapter 2 as a foundational experiment, A. flavus was serially propagated through insects to study the evolution of an opportunistic pathogen during repeated exposure to a single host. While A. flavus displayed de novo phenotypic alterations, namely decreased saprobic capacity, analysis of genotypic variation in Chapter 3 signified a host-imposed bottleneck on the pathogen population, emphasizing the host's role in shaping pathogen population structure. Described in Chapter 4, the serial passage scheme enabled the isolation of an A. flavus cysteine/methionine auxotroph with characteristics reminiscent of an obligate insect pathogen, suggesting that lost biosynthetic capacity may restrict host range based on nutrient availability and provide selection pressure for further evolution. As outlined in Chapter 6, cysteine/methionine auxotrophy had the pleiotrophic effect of increasing virulence factor production, affording the slow-growing auxotroph with a modified pathogenic strategy such that virulence was not reduced. Moreover in Chapter 7, transformation with a virulence factor from a facultative insect pathogen failed to increase virulence, demonstrating the necessity of an appropriate genetic background for virulence factor acquisition to instigate pathogen evolution.
    • Astringency and other oral sensations : biological sources of individual variation and association with food and beverage behaviour

      Bajec, Marth R.; Department of Biological Sciences (Brock University, 2011-10-14)
      Orosensory perception strongly influences liking and consumption of foods and beverages. This thesis examines the influence of biological sources of individual variation on the perception of prototypical orosensory stimuli, food liking, self-reported alcohol liking and consumption, and indices of health. Two orosensory indices were examined: propylthiouracil (PROP) responsiveness, a genetically-mediated index of individual variation associated with enhanced responsiveness to orosensory stimuli often expressed as PROP taster status (PTS); and thermal taster status (TTS), a recently reported index of orosensory responsiveness. Taster status in PTS and/or TTS confers greater responsiveness to most orosensory stimuli. Gender, age, ethnicity, and fungiform papillae (FP) density were not associated with orosensory responsiveness to tastants, an astringent, and a flavour. Unlike PROP responsiveness, FP density was not associated with TTS. Both PROP responsiveness and TTS were associated with increased responsiveness to orosensory stimuli, including temperature and astringency. For PROP, this association did not hold when stimuli were presented at cold or warm temperatures, which are ecologically valid since most foods and beverages are not consumed at ambient temperature. Thermal tasters (TTs), who perceive 'phantom' taste sensations with lingual thermal stimulation, were more responsive to stimuli at both temperatures than thermal non-tasters (TnTs). While PTS, TIS, and gender affected self-reported liking and consumption of some alcoholic beverages, gender associated with the greatest number of beverage types and consumption parameters, with males generally liking and consuming alcoholic beverages more than females. Age and gender were the best predictors of alcoholic beverageAiking and consumption. As expected, .. liking of bitter and fatty foods and cream was inversely related to PROP responsiveness. TTS did not associate with body mass index or waist circumference, and contrary to previous studies, neither did PROP responsiveness. Taken together, TnTs' greater liking of cooked fruits and vegetables and high alcohol, and astringent alcoholic beverages than TTs suggests differences between TTS groups may be driven by perceived temperature and texture. Neither an interaction between PTS and TTS nor a TTS effect on PROP responsiveness was observed, suggesting these two indices of individual variation exert their influences on orosensory perception independently.
    • Behaviour and life history of a large carpenter bee (Xylocopa virginica) in the northern extent of its range

      Prager, Sean Michael.; Department of Biological Sciences (Brock University, 2008-05-28)
      Large carpenter bees (Hymenoptera: Apidae: Xylocopa) have traditionally been thought of as exhibiting solitary or occasionally communal colony social organization. However, studies have demonstrated more complex fonns of social behaviour in this genus. In this document, I examine elements ofbehaviour and life history in a North American species at the northern extreme of its range. Xylocopa virginica was found to be socially polymorphic with both solitary and meta-social or semi-social nests in the same population. In social nests, there is no apparent benefit from additional females which do not perfonn significant work or guarding. I found that the timing of life-history events varies between years, yet foraging effort only differed in the coldest and wettest year of2004 the study. Finally, I that male X virginica exhibit female defence polygyny, with resident and satellite males. Resident males maintain their territories through greater aggression relative to satellites.
    • Cell wall degrading enzymes and interaction between Trichoderma Aggressivum and Agaricus Bisporus

      Abubaker, Kamal Salem; Department of Biological Sciences (Brock University, 2010-10-26)
      Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.
    • Cell-selective modulation of the neuromuscular system in Drosophila

      Ormerod, Kiel; Department of Biological Sciences
      The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.
    • Cellular Mechanisms of Resveratrol's Interaction with Mitochondrial Reactive Oxygen Species Metabolism

      Robb, Ellen; Department of Biological Sciences (Brock University, 2013-05-14)
      Resveratrol, a polyphenol found naturally in red wines, has attracted great interest in both the scientific community and the general public for its reported ability to protect against many of the diseases facing Western society today. While the purported health effects of resveratrol are well characterized, details of the cellular mechanisms that give rise to these observations are unclear. Here, the mitochondrial antioxidant enzyme Mn superoxide dismutase (MnSOD) was identified as a proximal target of resveratrol in vitro and in vivo. MnSOD protein and activity levels increase significantly in cultured cells treated with resveratrol, and in the brain tissue of mice given resveratrol in a high fat diet. Preventing the increase in MnSOD levels eliminates two of resveratrol’s more interesting effects in the context of human health: inhibition of proliferative cell growth and cytoprotection. Thus, the induction of MnSOD is a critical step in the molecular mechanism of resveratrol. Mitochondrial morphology is a malleable property that is capable of impeding cell cycle progression and conferring resistance against stress induced cell death. Using confocal microscopy and a novel ‘cell free’ fusion assay it was determined that concurrent with changes in MnSOD protein levels, resveratrol treatment leads to a more fused mitochondrial reticulum. This observation may be important to resveratrol’s ability to slow proliferative cell growth and confer cytoprotection. Resveratrol's biological activities, including the ability to increase MnSOD levels, are strikingly similar to what is observed with estrogen treatment. Resveratrol fails to increase MnSOD levels, slow proliferative cell growth and confer cytoprotection in the presence of an estrogen receptor antagonist. Resveratrol's effects can be replicated with the specific estrogen receptor beta agonist diarylpropionitrile, and are absent in myoblasts lacking estrogen receptor beta. Four compounds that are structurally similar to resveratrol and seven phytoestrogens predicted to bind to estrogen receptor beta were screened for their effects on MnSOD, proliferative growth rates and stress resistance in cultured mammalian cells. Several of these compounds were able to mimic the effects of resveratrol on MnSOD levels, proliferative cell growth and stress resistance in vitro. Thus, I hypothesize that resveratrol interacts with estrogen receptor beta to induce the upregulation of MnSOD, which in turn affects cell cycle progression and stress resistance. These results have important implications for the understanding of RES’s biological activities and potential applications to human health.
    • Characterisation and optimisation of the flavour of health-promoting, plantderived bitterants in functional beverages.

      Gaudette, Nicole J.; Applied Health Sciences Program (2012-07-30)
      Flavour is a combination of taste, odour, and chemesthetic sensations. Close associations exist between these sensory modalities, and thus, the overall flavour of a food or beverage product can change when the intensity of one or more of these sensations is altered. Strategies to modify flavour are often utilized by the food industry, and are central to the engineering of new and reformulated products. For functional food and beverages, flavour modification is particularly important, as fortifying agents can elicit high levels of less than desirable sensations, such as bitterness and astringency. The application of various flavour modifying strategies can decrease the perceived intensity of these sensations, and in tum, improve the sensory profile of the product. This collection of studies describes the sensory characteristics of experimental functional beverages fortified with trans-resveratrol, (+)-catechin, and/or caffeine, and examines the impact of novel flavour modifying strategies on the perceived flavour of these beverages. In the first study, results demonstrate that the flavour profile of Cabemet Sauvignon wines fortified with 20 mglL and 200 mg/L of trans-resveratrol is not perceived as different compared to control wine (0 mglL). However, Riesling wine fortified with 200 mg/L is perceived as significantly higher in bitterness compared to 20 mglL and control. For some functional food formulations, alternative strategies for flavour modification are needed. Traditional methods, such as the addition of sucrose and sodium chloride, may decrease the perceived 'healthiness' of a product, and thus, may be sub-optimal. In a second study, high and low concentrations of five different bitter inhibiting compounds - 'bitter blockers' - (B-cyclodextrin, homoeridictyol sodium salt, carboxymethylcellulose - low viscosity, zinc sulfate, magnesium sulfate) were tested for their efficacy towards decreasing the bitterness of high and low concentrations of caffeine and (+)catechin - two health-relevant, plant-derived bitterants. B-cyclodextrin and homoeridictyol sodium salt were the most effective blockers at decreasing (+ )-catechin and caffeine, respectively. In addition to bitter blockers, additional flavour modifying strategies, either alone or in combination - may also be successful in functional food formulations. Both sucrose and rebaudioside A - a plant-derived sweetener - were effective at decreasing the bitterness of (+)catechin. When added to (+)-catechin along with B-cyc1odextrin, both sweeteners provided the most effective decrease in bitterness compared to binary, ternary, or quaternary mixtures of (+)catechin together with bitter blockers, sweeteners, andlor odourants. The perceived intensity of sensations elicited by sweeteners and odourants was not affected by the addition of bitter blockers, and thus, their impact within these complex matrices is minimal. In addition, withinmodal (taste-taste) compared to cross-modal (taste-odour) sensory interactions were more effective at decreasing the bitterness of (+ )-catechin. Overall, results from these studies demonstrate that certain novel, alternative flavour modifying approaches may be successful towards lowering the bitterness and astringency elicited by (+ )-catechin and caffeine in aqueous solutions.
    • Competing demands for a complex system : photosystem II repair, photoprotection and quantum yield

      Veerman, John; Department of Biological Sciences (2012-04-04)
      Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.
    • Cryptic species status of Anopheles (Diptera: Culicidae) mosquitoes in Canada using a multidisciplinary approach

      Thielman, Aynsley; Department of Biological Sciences (2012-04-04)
      Many species of Anopheles mosquitoes (Diptera: Culicidae) are now recognized as species complexes whose members are often indistinguishable morphologically but identifiable based on ecological, genetic, or behavioural data. Because the members of species complexes often differ in their vector potential, accurate identification of vector species is essential for successful mosquito control. To investigate the cryptic species status of Anopheles mosquitoes in Canada, specimens were collected from across the country and examined using morphological, molecular, and ecological data. Six of the seven traditionally recognised species from Canada were collected from locations in British Columbia, Quebec, Newfoundland and Labrador, and throughout Ontario, including Anopheles barberi, An. earlei, An. freeborni, An. punctipennis, An. quadrimaculatus s.l., and An. walkeri. Variation in polymorphic traits within An. earlei, An. punctipennis, and An. quadrimaculatus s.l. were quantified and egg morphology examined using scanning electron microscopy. Morphological identification of adult and larval specimens suggested that two described cryptic species, An. perplexens and An. smaragdinus, were present in Canada. DNA sequence data were analysed for evidence of cryptic species using three molecular markers: COl, ITS2, and ITS!. Intraspecific COl variation was very low in most species «1 %), except for An. punctipennis with 2% sequence divergence between those from British Columbia (BC) and Ontario (ON), and An. walkeri with 7% sequence divergence between populations from Manitoulin Island (NO) and Long Point Provincial Park (LP). Similar patterns were also seen using ITS2 and ITS 1. Therefore, molecular data revealed the presence of two putative cryptic species within two species examined (i.e., An. walkeri and An. punctipennis), corresponding to collection location (i.e., NO vs. LP and BC vs. ON, respectively). Surprisingly, there was no molecular support for the presence of either An. perplexens or An. smaragdinus in Canada despite the morphological assessments. Ecological data from all collection sites were recorded and are available in an online database designed to manage all collection and identification data. Current bionomic information, including regional abundance, larval habitat, and species associations, was determined for each species. This multidisciplinary study of Anopheles mosquitoes is the first detailed investigation of these potential disease vectors in Canada and demonstrates the importance of an integrated approach to anopheline systematics that includes molecular data.
    • Defence of Agaricus bisporus against toxic secondary metabolites from Trichoderma aggressivum.

      Sjaarda, Calvin; Department of Biological Sciences (Brock University, 2013-09-12)
      Trichoderma spp are effective competitors against other fungi because they are mycoparasitic and produce hydrolytic enzymes and secondary metabolites that inhibit the growth of their competitors. Inhibitory compounds produced by Trichoderma aggressivum, the causative agent of green mold disease, are more toxic to the hybrid off-white strains of Agaricus bisporus than the commercial brown strains, consistent with the commercial brown strain’s increased resistance to the disease. This project looked at the response of hybrid off-white and commercial brown strains of A. bisporus to the presence of T. aggressivum metabolites with regard to three A. bisporus genes: laccase 1, laccase 2, and manganese peroxidase. The addition of T. aggressivum toxic metabolites had no significant effect on MnP or lcc1 transcript abundance. Alternatively, laccase 2 appears to be involved in resistance to T. aggressivum because the presence of T. aggressivum metabolites results in higher lcc2 transcript abundance and laccase activity, especially in the commercial brown strain. The difference in laccase expression and activity between A. bisporus strains was not a result of regulatory or coding sequence differences. Alteration of laccase transcription by RNAi resulted in transformants with variable levels of laccase transcript abundance. Transformants with a low number of lcc transcripts were very sensitive to T. aggressivum toxins, while those with a high number of lcc transcripts had increased resistance. These results indicated that laccase activity, in particular that encoded by lcc2, serves as a defense response of A. bisporus to T. aggressivum toxins and contributes to green mold disease resistance in commercial brown strains.
    • Delineation of within-site terroir effects using soil and vine water measurement. Investigation of Cabernet Franc

      Hakimi-Rezaei, Javad; Department of Biological Sciences (Brock University, 2009-01-28)
      . The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii
    • Delineation of within-site terroir effects using soil and vine water measurements in Riesling vineyards within the Niagara Peninsula

      Willwerth, James Joseph; Department of Biological Sciences (2012-04-04)
      The major focus of this dissertation was to explain terroir effects that impact wine varietal character and to elucidate potential determinants of terroir by testing vine water status (VWS) as the major factor of the terroir effect. It was hypothesized that consistent water status zones could be identified within vineyard sites, and, that differences in vine performance, fruit composition and wine sensory attributes could be related to VWS. To test this hypothesis, ten commercial Riesling vineyards representative of each Vintners Quality Alliance sub-appellation were selected. Vineyards were delineated using global positioning systems and 75 to 80 sentinel vines per vineyard were geo-referenced for data collection. During the 2005 to 2007 growing seasons, VWS measurements [midday leaf water potential ('l')] were collected from a subset of these sentinel vines. Data were collected on soil texture and composition, soil moisture, vine performance (yield components, vine size) and fruit composition. These variables were mapped using global information system (GIS) software and relationships between them were elucidated. Vines were categorized into "low" and "high" water status regions within each vineyard block and replicate wines were made from each. Many geospatial patterns and relationships were spatially and temporally stable within vineyards. Leaf'l' was temporally stable within vineyards despite different weather conditions during each growing season. Generally, spatial relationships between 'l', soil moisture, vine size, berry weight and yield were stable from year to year. Leaf", impacted fruit composition in several vineyards. Through sorting tasks and multidimensional scaling, wines of similar VWS had similar sensory properties. Descriptive analysis further indicated that VWS impacted wine sensory profiles, with similar attributes being different for wines from different water status zones. Vineyard designation had an effect on wine profiles, with certain sensory and chemical attributes being associated from different subappellations. However, wines were generally grouped in terms of their regional designation ('Lakeshore', 'Bench', 'Plains') within the Niagara Peninsula. Through multivariate analyses, specific sensory attributes, viticulture and chemical variables were associated with wines of different VWS. Vine water status was a major contributor to the terroir effect, as it had a major impact on vine size, berry weight and wine sensory characteristics.
    • Development of a bacteriophage-based biopesticide for fire blight

      Lehman, Susan M.; Department of Biological Studies (Brock University, 2007-05-28)
      Fire blight is an economically important disease of apples and pears that is caused by the bacterium Erwinia amylovora. Control of the disease depends on limiting primaly blosson1 infection in the spring, and rapidly removing infected tissue. The possibility of using phages to control E.amylovora populations has been suggested, but previous studies have. failed to show high treatment efficacies. This work describes the development of a phage-based biopesticide that controls E. amylovora populations under field conditions, and significantly reduces the incidence of fire blight. This work reports the first use ofPantoea agglomerans, a non-pathogenic relative ofE. amylovora, as a carrier for E. amylovora.phages. Its role is to support a replicating population of these phages on blossom surfaces during the period when the flowers are most susceptible to infection. Seven phages and one carrier isolate were selected for field trials from existing collections of 56 E. amylovora phages and 249 epiphytic orchard bacteria. Selection of the . /' phages and carrier was based on characteristics relevant to the production and field perfonnance of a biopesticide: host range, genetic diversity, growth under the conditions of large-scale production, and the ability to prevent E. amylovora from infecting pear blossoms. In planta assays showed that both the phages and the carrier make significant contributions to reducirig the development of fire blight symptoms in pear blossoms. Field-scale phage production and purification methods were developed based on the growth characteristics of the phages and bacteria in liquid culture, and on the survival of phages in various liquid media. Six of twelve phage-carrier biopesticide treatments caused statistically signiflcant reductions in disease incidence during orchard trials. Multiplex real-time PCR was used to simultaneously monitor the phage, carrier, and pathogen populations over the course of selected treatments. In all cases. the observed population dynamics of the biocontrol agents and the pathogen were consistent with the success or failure of each treatment to control disease incidence. In treatments exhibiting a significantly reduced incidel1ce of fire blight, the average blossom population ofE.amylovora had been reduced to pre-experiment epiphytic levels. In successful treatments the phages grew on the P. agglomerans carrier for 2 to 3 d after treatment application. The phages then grew preferentially on the pathogen, once it was introduced into this blossom ecosystem. The efficacy of the successful phage-based treatnlents was statistically similar to that of streptomycin, which is the most effective bactericide currently available for fire blight prevention. The in planta behaviour ofE. amylovora was compared to that ofErwinia pyrifoliae, a closely related species that causes fire blight-like synlptoms on pears in southeast Asia. Duplex real-time PCR was used to monitor the population dynamics of both species on single blossonls. E. amylovora exhibited a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae. The genome ofErwinia phage <l>Ea21-4 was sequenced and annotated. Most of the 8-4.7 kB genome is substantially different from previously described sequences, though some regions are notably similar to Salmonella phage Felix 01 . Putative functions were assigned to approximately 30% of the predicted open reading frames based on amino acid sequence comparisons and N-terminal sequencing of structural proteins.
    • The efficacy of anti-predator behaviour in the wood fog tadpole (Rana sylvatica) /

      Kerling, Candice L.; Department of Biological Sciences (Brock University, 2007-06-04)
      Activity has been suggested as an important behaviour that is tightly linked with predator avoidance in tadpoles. In this thesis I examine predator-prey relationships using wood frog tadpoles {Rana sylvaticd) as prey and dragonfly larvae {AnaxJunius) and backswimmers {Notonecta undulatd) as predators. I explore the role of prey activity in predator attack rates, prey response to single and multiple predator introductions, and prey survivorship. The data suggest that Anax is the more successful predator, able to capture both active and inactive tadpoles. In contrast, Notonecta strike at inactive prey less frequently and are seldom successftil when they do. A mesocosm study revealed that the presence of any predator resulted in reduced activity level of tadpoles. Each predator species alone had similar effects on tadpole activity, as did the combined predator treatment. Tadpole survivorship, however, differed significantly among both predator treatments and prey populations. Tadpwles in the combined predator treatment had enhanced risk; survivorship was lower than that expected if the two predators had additive effects. Differences in survivorship among wood frog populations showed that tadpoles from a lake habitat had the lowest survivorship, those from a shallow pond habitat had an intermediate survivorship, and tadpoles from a marsh habitat had the highest survivorship. The frequency of interactions with predators in the native habitat may be driving the population differences observed. In conclusion, results from this study show that complex interactions exist between predators, prey, and the environment, with activity playing a key role in the survival of tadpoles.
    • Elucidation of odour-potent compounds and sensory profiles of Vidal blanc and Riesling icewines from the Niagara Peninsula : effect of harvest date and crop level

      Bowen, Amy J.; Department of Biological Sciences (Brock University, 2011-10-14)
      I t was hypothesized that the freeze/thaw cycles endured by icewine grapes would change their chemical composition, resulting in unique chemical fingerprint and sensory properties, and would be affected by harvest date (HD) and crop level (CL). The objectives were: 1) to identify odour-active compounds using gas chromatographic and sensory analysis; 2) to determine the effect of CL and HD on these compounds; 3) to determine the icewine sensory profiles; 4) to correlate analytical and sensory results for an overall icewine profile. CharmAnalysis™ determined the Top 15 odour-potent compounds in Vidal and Riesling icewine and table wines; 24 and 23 compounds, respectively. The majority of the compounds had the highest concentrations in the icewines compared to table wines. These compounds were used as the foundation for assessing differences in icewine chemical profiles from different HD and CL. Vidal and Riesling icewine were made from grapes picked at different HD; HI : 19 December; H2: 29 December; H3: 18 January; H4: 11 February (Vidal only). HI wines differed from H3 and H4 wines in both Vidal and Riesling for aroma compounds and sensory profiles. - Three·CL [control (fully cropped), cluster thin at fruit set to one basal cluster/shoot (TFS), and cluster thin at veraison to one basal cluster/shoot (TV)] were evaluated for Riesling and Vidal cultivars over two seasons. Vidal icewines had the highest concentration of aroma compounds in the control and TV icewines in 2003 and in TFS icewines in 2004. In Riesling, most aroma compounds had the highest concentration in the TV icewines and the lowest concentration in the TFS wine for both years. The thinned treatments were associated with almost all of the sensory attributes in both cultivars, both years. HD and CL affected the chemical variables, aroma compounds and sensory properties of Vidal and Riesling icewines and freeze/thaw events changed their sensory profile. The most odour-potent compounds were p-damascenone, cis-rose oxide, 1- octen-3-ol, 4-vinylguaiacol, ethyl octanoate, and ethyl hexanoate. The role of Pdamascenone as a marker compound for icewine requires further investigation. This research provides a strong foundation for the understanding the odour-active volatiles and sensory profiles important to icewine.
    • ENDOCANNABINOID REGULATION OF ADOLESCENT DEVELOPMENT IN MALE AND FEMALE RATS

      Simone, Jonathan; Department of Biological Sciences
      The present thesis investigated the contributions of adolescent endocannabinoid signalling to brain and behaviour development in male and female rats. In chapter 2, daily administration of the CB1 antagonist AM251, alone or in tandem with a psychological stressor, increased social interactions, reduced dorsal hippocampal CB1 expression, and increased mPFC GAD67 expression in female rats 24-48 h after treatment, with no effects in males. In chapter 3, adolescent CB1 antagonism reduced anxiety in adult males, with no effects in females. Conversely, adolescent AM251 increased contextual fear in adult females, with no effects in males. In chapter 4, AM251 females spent more time initiating social interactions after a 5-day drug washout period than vehicle females, with no effects in males. To identify brain regions underlying the effects of AM251 on social behaviours, I repeated social interaction testing in vehicle and AM251 females and collected brains for immunohistochemical labelling of EGR-1 as a marker of neural activation in the CA1, CA2, and CA3 subfields of the dorsal hippocampus and the shell and core divisions of the nucleus accumbens (NAc). Consistent with my previous findings, AM251 females spent more time initiating social interactions and had greater EGR-1 cell counts in the NAc shell than vehicle females, with no group differences in the NAc core or in any of the hippocampal subfields investigated. EGR-1 cell counts in the dCA2 were negatively correlated with social interactions in vehicle and AM251 females. A positive correlation between NAc shell EGR-1 cell counts and social interactions was observed only in AM251 females. Regression analysis using drug treatment and EGR-1 cell counts in dCA2 and NAc shell resulted in a model with an adjusted R2 of 0.90. Both drug treatment and EGR-1 cell counts in the dorsal CA2 emerged as unique predictors of individual differences in social interaction, and drug and NAc shell EGR-1 cell counts interacted to significantly predict social interactions in AM251 females only. Together, these studies provide support for sex-specific contributions of endocannabinoid signalling to the development of brain and behaviour in adolescence in male and female rats.
    • Erwinia amylovora bacteriophage resistance

      Roach, Dwayne R.; Department of Biological Sciences (2012-04-04)
      It has been proposed that phages can be used commercially as a biopesticide for the control of fire blight caused by the phytopathogen Erwinia amylovora. The aim of these studies was to investigate two common bacterial resistance mechanisms, lysogeny and exopolysaccharide production and their influence on phage pathogenesis. A multiplex real-time PCR protocol was designed to monitor and quantify Podoviridae and Myoviridae phages. This protocol is compatible with known E. amylovora and Pantoea agglomerans rtPCR primers/probes which allowed simultaneous study of both phage and bacterial targets. Using in vitro positive phage selection, bacteriophage insensitive derivatives were isolated within sensitive populations of E. amylovora. Prophage screening with real-time PCR and mitomycin C induction determined that the insensitive derivatives harboured the temperate Podoviridae phage ΦEaTlOO. Lysogenic conversion resulted in resistance to secondary homologous phage infections. Prophage screening of environmental samples of E. amylovora and P. agglomerans collected from various locations in Canada, United States and Europe did not demonstrate lysogeny. Therefore, lysogeny is rare or absent while these bacterial species reside on the plant. Recombineering was used to construct exopolysaccharide deficient E. amylovora mutants. The EPS amylovoran mutants became resistant to Podoviridae and certain Siphoviridae phages. Increasing amylovoran production increased phage population growth, presumably by increasing the total number of bacterial cell surface receptors which promoted increased phage infections. In contrast, amylovoran did not playa role in Myoviridae infections, nor did production of the EPS levan for any phage pathogenesis.
    • Etiology and Management of Grape Sour Rot

      Huber, Cristina; Department of Biological Sciences
      Sour rot is characterized by increased volatile acidity (VA) in ripe grapes. VA is associated with spoilage organisms and wineries may reject grape crops based on their concentration of acetic acid. Our research associated Hanseniaspora uvarum, Gluconobacter oxydans, and to a lesser extent, Gluconobacter cerinus and Acetobacter malorum with sour rotted grapes in the Niagara Peninsula, designated viticultural area, Ontario, Canada, and the pathogenicity of these organisms was confirmed by laboratory assays. Only G. oxydans was shown to penetrate around the site of pedicel attachment to the grape. The yeasts required further wounding. Candida zemplinina was also associated with the sour rot microbial community. This species showed variable pathogenicity by strain and most strains were not highly pathogenic. C. zemplinina gained dominance in the microbial population of grapes only after sour rot symptoms were observed, indicating a succession which was studied in laboratory assays. There was a correlation between temperature, moisture, and berry ripeness and the development of sour rot when conditions were monitored in a Vitis vinifera cv. Riesling vineyard over four years, and this was confirmed in laboratory assays. Disease management options are limited since sour rot is caused by a complex of yeasts and bacteria, with symptoms developing just as grapes approach maturity. Post-veraison treatments for sour rot were investigated. Wineries routinely add potassium metabisulphite (KMS) to the surface of fruit in bins and to grape juice to kill spoilage organisms. Replicated field trials were conducted in V. vinifera cv. Riesling in 2010 and 2011 to determine the efficacy of KMS at different concentrations and pre-harvest timings as a fruiting-zone spray. Potassium bicarbonate (Milstop) was also evaluated for its efficacy against sour rot. Plots were rated for incidence and severity of sour rot and VA (g acetic acid/L juice). KMS treatments at concentrations above 5 kg/1000L and Milstop sprayed at the label concentration of 5.6 kg/1000L were able to reduce the severity of sour rot compared to untreated control plots which had a severity above 50% (2011). KMS was able to reduce VA to below the winery rejection threshold of 0.24 g acetic acid/L when sour rot severity reached 12% in untreated plots (2010). When tested in the laboratory in disk diffusion assays conducted on yeast peptone dextrose agar, KMS at a concentration of 10 g/L had the greatest efficacy against G. oxydans and H. uvarum. Grape incubation assays showed the potential of KMS acidified with tartaric acid to reduce sour rot symptoms. Acidification did not show as much potential in field trials, calling for further research.