Sorry, no submissions are possible during the upgrade window.

Show simple item record

dc.contributor.authorWinsborrow, Beatrice G.en_US
dc.date.accessioned2009-07-09T18:42:12Z
dc.date.available2009-07-09T18:42:12Z
dc.date.issued1987-07-09T18:42:12Z
dc.identifier.urihttp://hdl.handle.net/10464/2011
dc.description.abstractA survey of predominantly industrial silicon carbide has been carried out using Magic Angle Spinning nuclear magnetic resonance (MAS nmr); a solid state technique. Three silicon carbide polytypes were studied; 3C, 6H, and 15R. The 13C and 29 Si MAS nmr spectra of the bulk SiC sample was identified on the basis of silicon (carbon) site type in the d iff ere n t pol Y t Y pes • Out to 5.00 A fro mac en t r a lsi 1 i con (0 r carbon) atom four types of sites were characterized using symmetry based calculations. This method of polytype analysis was also considered, in the prelminary stages, for applications with other polytypic material; CdBr 2 , CdI 2 , and PbI 2 " In an attempt to understand the minor components of silicon carbide, such as its surface, some samples were hydrofluoric acid washed and heated to extreme temperatures. Basically, an HF removable species which absorbs at -110 ppm (Si0 2 ) in the 29 Si MAS nmr spectrum is found in silicon carbide after heating. Other unidentified peaks observed at short recycle delays in some 29 Si MAS nmr spectra are considered to be impurities that may be within the lattice. These components comprise less than 5% of the observable silicon. A Tl study was carried out for 29 Si nuclei in a 3C ii polytype sample, using the Driven Equilibrium Single-Pulse Observation of T1 (DESPOT) technique. It appears as though there are a number of nuclei that have the same chemical shift but different T1 relaxation times. The T1 values range from 30 seconds to 11 minutes. Caution has to be kept when interpreting these results because this is the first time that DESPOT has been used for solid samples and it is not likely in full working order. MAS nmr indicates that the 13C and 29 Si ~sotropic chemical shifts of silicon carbide appear to have a reciprocal type of relationship_ Single crystal nmr analysis of a 6H sample is accordance with this finding when only the resultant isotropic shift is considered. However, single crystal nmr also shows that the actual response of the silicon and carbon nuclear environment to the applied magnetic field at various angles is not at all reciprocal. Such results show that much more single crystal nmr work is required to determine the actual behavior of the local magnetic environment of the SiC nuclei.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectSilicon carbide.en_US
dc.subjectNuclear magnetic resonance.en_US
dc.subjectSilicon carbide--Electric properties.en_US
dc.titlePolytypism and Silicon carbide : a solid state nuclear magnetic resonance studyen_US
dc.typeElectronic Thesis or Dissertationen
dc.degree.nameM.Sc. Chemistryen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Chemistryen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US
refterms.dateFOA2021-08-08T01:33:08Z


Files in this item

Thumbnail
Name:
Brock_Winsborrow_Beatrice_1987.pdf
Size:
4.316Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record