Show simple item record

dc.contributor.authorHubschle, Hermann J.en_US
dc.date.accessioned2009-07-09T18:39:17Z
dc.date.available2009-07-09T18:39:17Z
dc.date.issued1989-07-09T18:39:17Z
dc.identifier.urihttp://hdl.handle.net/10464/1984
dc.description.abstractWe have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectCrystal lattices.en_US
dc.subjectCrystals--Mathematical models.en_US
dc.subjectCrystals--Thermal properties.en_US
dc.titleOn the equation of state and atomic mean square displacement of crystalsen_US
dc.typeElectronic Thesis or Dissertationen_US
dc.degree.nameM.Sc. Physicsen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Physicsen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US
refterms.dateFOA2021-07-16T11:51:13Z


Files in this item

Thumbnail
Name:
Brock_Hubschle_Hermann_1989.pdf
Size:
7.726Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record