Show simple item record

dc.contributor.authorAllen, Lisa J.en_US
dc.date.accessioned2009-07-09T17:35:37Z
dc.date.available2009-07-09T17:35:37Z
dc.date.issued1997-07-09T17:35:37Z
dc.identifier.urihttp://hdl.handle.net/10464/1889
dc.description.abstractGABA (y-amino butyric acid) is a non-protein amino acid synthesized through the a-decarboxylation of L-glutamate. This reaction is catalyzed by L-glutamate decarboxylase (EC 4.1.1.15), a cytosolic Ca2+/calmodulin-stimulated enzyme. The purpose of this study is to determine whether or not GABA accumulation is associated with the hypersensitive response of isolated Asparagus sprengeri mesophyll cells. The addition of 25 J.lM mastoparan, a G protein activator, to suspensions of isolated asparagus mesophyll cells significantly increased GABA synthesis and cell death. Cell death was assessed using Evan's blue dye and fluorescein diacetate tests for cell viability. In addition, mastoparan stimulated pH-dependent alkalinization of the external medium, and a rapid and large 02 consumption followed by a loss of photosynthetic activity. The rate of 02 consumption and the net decrease in 02 in the dark was enhanced by light. The inactive mastoparan analogue Mas17 was ineffective in stimulating GABA accumulation, medium alkalinization, 02 uptake and cell death. Accumulation of H202 in response tomastoparan was not detected, however, mastoparan caused the cell-dependent degradation of added H202. The pH dependence of mastoparan-stimulated alkalinization suggests cellular electrolyte leakage, while the consumption of 02 corresponds to the oxidative burst in which 02 at the cell surface is reduced to form various active oxygen species. The results are indicative of the "hypersensitive response" of plants to pathogen attack, namely, the death of cells in the locality of pathogen invasion. The data are compatible with a model in which mastoparan triggers G protein activity, subsequent intracellular signal transduction pathway/s, and the hypersensitive response. It is postulated that the physiological elicitation of the hypersensitive response involves G protein signal transduction. The synthesis of GABA during the hypersensitive response has not been documented previously; however the role/s of GABA synthesis in the hypersensitive response, if any, remain unclear.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectGABA.en_US
dc.subjectPlant cells and tissues.en_US
dc.subjectCell death.en_US
dc.titleGABA accumulation and the hypersensitive response in isolated mesophyll cells treated with the G protein activator mastoparanen_US
dc.typeElectronic Thesis or Dissertationen_US
dc.degree.nameM.Sc. Biological Sciencesen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Biological Sciencesen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US
refterms.dateFOA2021-08-07T02:02:56Z


Files in this item

Thumbnail
Name:
Brock_Allen_Lisa_1997.pdf
Size:
10.57Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record