• Login
    View Item 
    •   Repository Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Biological Sciences
    • View Item
    •   Repository Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    GABA accumulation and the hypersensitive response in isolated mesophyll cells treated with the G protein activator mastoparan

    Thumbnail
    View/Open
    Brock_Allen_Lisa_1997.pdf (10.57Mb)
    Date
    1997-07-09
    Author
    Allen, Lisa J.
    Metadata
    Show full item record
    Abstract
    GABA (y-amino butyric acid) is a non-protein amino acid synthesized through the a-decarboxylation of L-glutamate. This reaction is catalyzed by L-glutamate decarboxylase (EC 4.1.1.15), a cytosolic Ca2+/calmodulin-stimulated enzyme. The purpose of this study is to determine whether or not GABA accumulation is associated with the hypersensitive response of isolated Asparagus sprengeri mesophyll cells. The addition of 25 J.lM mastoparan, a G protein activator, to suspensions of isolated asparagus mesophyll cells significantly increased GABA synthesis and cell death. Cell death was assessed using Evan's blue dye and fluorescein diacetate tests for cell viability. In addition, mastoparan stimulated pH-dependent alkalinization of the external medium, and a rapid and large 02 consumption followed by a loss of photosynthetic activity. The rate of 02 consumption and the net decrease in 02 in the dark was enhanced by light. The inactive mastoparan analogue Mas17 was ineffective in stimulating GABA accumulation, medium alkalinization, 02 uptake and cell death. Accumulation of H202 in response tomastoparan was not detected, however, mastoparan caused the cell-dependent degradation of added H202. The pH dependence of mastoparan-stimulated alkalinization suggests cellular electrolyte leakage, while the consumption of 02 corresponds to the oxidative burst in which 02 at the cell surface is reduced to form various active oxygen species. The results are indicative of the "hypersensitive response" of plants to pathogen attack, namely, the death of cells in the locality of pathogen invasion. The data are compatible with a model in which mastoparan triggers G protein activity, subsequent intracellular signal transduction pathway/s, and the hypersensitive response. It is postulated that the physiological elicitation of the hypersensitive response involves G protein signal transduction. The synthesis of GABA during the hypersensitive response has not been documented previously; however the role/s of GABA synthesis in the hypersensitive response, if any, remain unclear.
    URI
    http://hdl.handle.net/10464/1889
    Collections
    • M.Sc. Biological Sciences

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback