Show simple item record

dc.contributor.authorRoberts, Pamela.en_US
dc.date.accessioned2009-07-09T17:35:08Z
dc.date.available2009-07-09T17:35:08Z
dc.date.issued2002-07-09T17:35:08Z
dc.identifier.urihttp://hdl.handle.net/10464/1853
dc.description.abstractRecombinant human adenovirus (Ad) vectors are being extensively explored for their use in gene therapy and recombinant vaccines. Ad vectors are attractive for many reasons, including the fact that (1) they are relatively safe, based on their use as live oral vaccines, (2) they can accept large transgene inserts, (3) they can infect dividing and postmitotic cells, and (4) they can be produced to high titers. However, there are also a number of major problems associated with Ad vectors, including transient foreign gene expression due to host cellular immune responses, problems with humoral immunity, and the creation of replication competent adenoviruses (RCA). Most Ad vectors contain deletions in the E1 region that allow for insertion of a transgene. However, the E1 gene products are required for replication and thus must be supplied in trans by a helper ceillille that will allow for the growth and packaging of the defective virus. For this purpose the 293 cell line (Graham et al., 1977) is used most often; however, homologous recombination between the vector and the cell line often results in the generation of RCA. The presence of RCA in batches of adenoviral vectors for clinical use is a safety risk because tlley . may result in the mobilization and spread of the replication-defective vector viruses, and in significant tissue damage and pathogenicity. The present research focused on the alteration of the 293 cell line such that RCA formation can be eliminated. The strategy to modify the 293 cells involved the removal of the first 380 bp of the adenovirus genome through the process of homologous recombination. The first step towards this goal involved identifying and cloning the left-end cellular-viral jUl1ction from 293 cells to assemble sequences required for homologous recombination. Polymerase chain reaction (PCR) was performed to clone the junction, and the clone was verified through sequencing. The plasn1id PAM2 was then constructed, which served as the targeting cassette used to modify the 293 cells. The cassette consisted of (1) the cellular-viral junction as the left-end region of homology, (2) the neo gene to use for positive selection upon tranfection into 293 cells, (3) the adenoviral genome from bp 380 to bp 3438 as the right-end region of homology, and (4) the HSV-tk gene to use for negative selection. The plasmid PAM2 was linearized to produce a double strand break outside the region of homology, and transfected into 293 cells using the calcium-phosphate technique. Cells were first selected for their resistance to the drug G418, and subsequently for their resistance to the drug Gancyclovir (GANC). From 17 transfections, 100 pools of G418f and GANCf cells were picked using cloning lings and expanded for screening. Genomic DNA was isolated from the pools and screened for the presence of the 380 bps using PCR. Ten of the most promising pools were diluted to single cells and expanded in order to isolate homogeneous cell lines. From these, an additional 100 G41Sf and GANef foci were screened. These preliminary screening results appear promising for the detection of the desired cell line. Future work would include further cloning and purification of the promising cell lines that have potentially undergone homologous recombination, in order to isolate a homogeneous cell line of interest.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectRecombinant viruses.en_US
dc.subjectAdenoviruses.en_US
dc.titleEngineering an improved adenovirus packaging cell lineen_US
dc.typeElectronic Thesis or Dissertationen
dc.degree.nameM.Sc. Biological Sciencesen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Biological Sciencesen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US
refterms.dateFOA2021-08-07T01:58:21Z


Files in this item

Thumbnail
Name:
Brock_Roberts_Pamela_2002.pdf
Size:
145.1Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record