• Login
    View Item 
    •   Home
    • Brock Major Research Papers
    • Mathematics and Statistics MRP
    • View Item
    •   Home
    • Brock Major Research Papers
    • Mathematics and Statistics MRP
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Some Families of Elliptic Curves

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Shah_Sudev_2023.pdf
    Size:
    226.8Kb
    Format:
    PDF
    Description:
    MRP Report
    Download
    Author
    Shah, Sudev
    Keyword
    Elliptic Curves
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/18169
    Abstract
    Elliptic curves, intricate mathematical structures, form a nexus between number theory, alge- braic geometry, and cryptography. This paper offers a thorough exploration of these curves, delving into their foundational properties, historical origins, and diverse applications. Beginning with an introduction to the basics of elliptic curves, including their Weierstrass form, group theory, and fundamental concepts such as the group law and torsion points, the paper traces the historical evolution of elliptic curve theory, recognizing the contributions of mathematicians like Abel, Jacobi, and Weierstrass. The crux of the paper by G. Walsh lies in extending prior research by effectively proving that for sufficiently large values of m, elliptic curves expressed as y^2 = f(x) + m^2, where f(x) is a cubic polynomial splitting over the integers, have a rank of at least 2. This result stands as an effective version of Shioda’s theorem, marking a significant advancement in the field. Moreover, the paper delves into the pivotal role of elliptic curve cryptography (ECC) in modern secure communication systems. ECC provides robust encryption, digital signatures, and key exchange protocols, leveraging the security and efficiency advantages inherent in elliptic curves. The paper emphasizes ECC’s prominence in contemporary cryptography, illustrating its preference in securing digital data transmission. Additionally, the paper explores recent developments, including endeavours to address the Birch and Swinnerton-Dyer conjecture. It also highlights the relevance of elliptic curves in solving complex mathematical problems, such as Diophantine equations and Fermat’s Last Theorem, underscoring their broader significance in number theory. In essence, this paper serves as a comprehensive guide to elliptic curves, illuminating their mathematical elegance and practical utility. It underscores their indispensable role in modern cryptography while acknowledging their enduring impact on the realm of mathematics. By unravelling the theoretical intricacies and real-world applications of elliptic curves, this paper invites readers to appreciate the profound interconnection between pure mathematical concepts and their transformative influence on contemporary technology.
    Collections
    Mathematics and Statistics MRP

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.