• Login
    View Item 
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Distributed Supervised Statistical Learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Khalili Mahmoudabadi_Ami ...
    Size:
    1.194Mb
    Format:
    PDF
    Download
    Author
    khalili Mahmoudabadi, Amir
    Keyword
    Distributed Learning
    Supervised Statistical Learning
    Sparse Linear Regression
    Liu-type Shrinkage Estimation Methods
    Aggregation of the Estimates
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/18087
    Abstract
    We live in the era of big data, nowadays, many companies face data of massive size that, in most cases, cannot be stored and processed on a single computer. Often such data has to be distributed over multiple computers which then makes the storage, pre-processing, and data analysis possible in practice. In the age of big data, distributed learning has gained popularity as a method to manage enormous datasets. In this thesis, we focus on distributed supervised statistical learning where sparse linear regression analysis is performed in a distributed framework. These methods are frequently applied in a variety of disciplines tackling large scale datasets analysis, including engineering, economics, and finance. In distributed learning, one key question is, for example, how to efficiently aggregate multiple estimators that are obtained based on data subsets stored on multiple computers. We investigate recent studies on distributed statistical inferences. There have been many efforts to propose efficient ways of aggregating local estimates, most popular methods are discussed in this thesis. Recently, an important question about the number of machines to deploy is addressed for several estimation methods, notable answers to the question are reviewed in this literature. We have considered a specific class of Liu-type shrinkage estimation methods for distributed statistical inference. We also conduct a Monte Carlo simulation study to assess performance of the Liu-type shrinkage estimation methods in a distributed framework.
    Collections
    Newly Added Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.