• Login
    View Item 
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    A Framework for Meta-heuristic Parameter Performance Prediction Using Fitness Landscape Analysis and Machine Learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_McDevitt_Liam_2023.pdf
    Size:
    28.20Mb
    Format:
    PDF
    Description:
    MSc Thesis
    Download
    Author
    McDevitt, Liam
    Keyword
    Meta-heuristics
    Particle Swarm Optimization
    Machine Learning
    Fitness Landscape Analysis
    Parameter-free
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/17477
    Abstract
    The behaviour of an optimization algorithm when attempting to solve a problem depends on the values assigned to its control parameters. For an algorithm to obtain desirable performance, its control parameter values must be chosen based on the current problem. Despite being necessary for optimal performance, selecting appropriate control parameter values is time-consuming, computationally expensive, and challenging. As the quantity of control parameters increases, so does the time complexity associated with searching for practical values, which often overshadows addressing the problem at hand, limiting the efficiency of an algorithm. As primarily recognized by the no free lunch theorem, there is no one-size-fits-all to problem-solving; hence from understanding a problem, a tailored approach can substantially help solve it. To predict the performance of control parameter configurations in unseen environments, this thesis crafts an intelligent generalizable framework leveraging machine learning classification and quantitative characteristics about the problem in question. The proposed parameter performance classifier (PPC) framework is extensively explored by training 84 high-accuracy classifiers comprised of multiple sampling methods, fitness types, and binning strategies. Furthermore, the novel framework is utilized in constructing a new parameter-free particle swarm optimization (PSO) variant called PPC-PSO that effectively eliminates the computational cost of parameter tuning, yields competitive performance amongst other leading methodologies across 99 benchmark functions, and is highly accessible to researchers and practitioners. The success of PPC-PSO shows excellent promise for the applicability of the PPC framework in making many more robust parameter-free meta-heuristic algorithms in the future with incredible generalization capabilities.
    Collections
    Newly Added Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.