• Login
    View Item 
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Analysis of Parkinson's Disease Gait using Computational Intelligence

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_MohamadBeigi_Omid_2023.pdf
    Size:
    11.31Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Author
    mohamad beigi, omid
    Keyword
    parkinson's disease
    computational intelligence
    machine learning
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/17438
    Abstract
    Millions of individuals throughout the world are living with Parkinson’s disease (PD), a neurodegenerative condition whose symptoms are difficult to differentiate from those of other disorders. Freezing of gait (FOG) is one of the signs of Parkinson’s disease that have been utilized as the main diagnostic factor. Bradykinesia, tremors, depression, hallucinations, cognitive impairment, and falls are all common symptoms of Parkinson’s disease (PD). This research uses a dataset that captures data on individuals with PD who suffer from freezing of gait. This dataset includes data for medication in both the “On” and “Off” stages (denoting whether patients have taken their medicines or not). The dataset is comprised of four separate experiments, which are referred to as Voluntary Stop, Timed Up and Go (TUG), Simple Motor Task, and Dual Motor and Cognitive Task. Each of these tests has been carried out over a total of three separate attempts (trials) to verify that they are both reliable and accurate. The dataset was used for four significant challenges. The first challenge is to differentiate between people with Parkinson’s disease and healthy volunteers, and the second task is to evaluate effectiveness of medicines on the patients. The third task is to detect episodes of FOG in each individual, and the last task is to predict the FOG episode at the time of occurrence. For the last task, the author proposed. a new framework to make real-time predictions for detecting FOG, in which the results demonstrated the effectiveness of the approach. It is worth mentioning that techniques from many classifiers have been combined in order to reduce the likelihood of being biased toward a single approach. Multilayer Perceptron, K-Nearest Neighbors, random Forest, and Decision Tree Classifier all produced the best results when applied to the first three tasks with an accuracy of more than 90% amongst the classifiers that were investigated.
    Collections
    Newly Added Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.