• Login
    View Item 
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Distributed MAP-Elites and its Application in Evolutionary Design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    thesis.pdf
    Size:
    4.885Mb
    Format:
    PDF
    Download
    Author
    Hon, Derek
    Keyword
    Genetic Programming
    Quality-Diversity
    MAP-Elites
    Island-Model Evolution
    Procedural Textures
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/17428
    Abstract
    Quality-Diversity search is the process of finding diverse solutions within the search space which do not sacrifice performance. MAP-Elites is a quality-diversity algorithm which measures n phenotypes/behaviours of a solution and places it into an $n$-dimensional hypercube based off its phenotype values. This thesis proposes an approach to addressing MAP-Elites' problem of exponential growth of hypercubes. The exponential growth of evaluation and computational time as the phenotypes/behaviours grow is potentially worse for optimization performance. The exponential growth in individuals results in the user being given too many candidate solutions at the end of processing. Therefore, MAP-Elites highlights diversity, but with the exponential growth, the said diversity is arguably impractical. This research proposes an enhancement to MAP-Elites with Distributed island-model evolution. This will introduce a linear growth in population as well as a reasonable number of candidate solutions to consider. Each island consists of a two dimensional MAP which allows for a realistic analysis and visualization of these individuals. Since the system increases on a linear scale, and MAP-Elites on an exponential scale, high-dimensional problems will show an even greater decrease in total candidate solution counts, which aids in the realistic analysis of a run. This system will then be tested on procedural texture generation with multiple computer vision fitness functions. This Distributed MAP-Elites algorithm was tested against vanilla GP, island-model evolution, and traditional MAP-Elites on multiple fitness functions and target images. The proposed algorithm was found, at the very minimum, to be competitive in fitness to the other algorithms and in some cases outperformed them. On top of this performance, when visually observing the best solutions, the algorithm was found to have been able to produce visually interesting textures.
    Collections
    Newly Added Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.