• Login
    View Item 
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Diversifying Emergent Behaviours with Age-Layered MAP-Elites

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Pozzuoli_Andrew_2022.pdf
    Size:
    21.25Mb
    Format:
    PDF
    Download
    Author
    Pozzuoli, Andrew
    Keyword
    emergent behaviour, quality-diversity (qd), multi-dimensional archive of phenotypic elites (map-elites), age-layered population structure (alps), game-playing agents
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/17186
    Abstract
    Emergent behaviour can arise unexpectedly as a by-product of the complex interactions of an autonomous system, and with the increasing desire for such systems, emergent behaviour has become an important area of interest for AI research. One aspect of this research is in searching for a diverse set of emergent behaviours which not only provides a useful tool for finding unwanted emergent behaviour, but also in finding interesting emergent behaviour. The multi-dimensional archive of phenotypic elites (MAP-Elites) algorithm is a popular evolutionary algorithm which returns a highly diverse set of elite solutions at the end of a run. The population is separated into a grid-like feature space defined by a set of behaviour dimensions specified by the user where each cell of the grid corresponds to a unique behaviour combination. The algorithm is conceptually simple and effective at producing high-quality, diverse solutions, but it comes with a major limitation on its exploratory capabilities. With each additional behaviour, the set of solutions grows exponentially, making high-dimensional feature spaces infeasible. This thesis proposes an option for increasing behaviours with a novel Age-Layered MAP-Elites (ALME) algorithm where the population is separated into age layers and each layer has its own feature space. By using different behaviours in the different layers, the population migrates up through the layers experiencing selective pressure towards different behaviours. This algorithm is applied to a simulated intelligent agent environment to observe interesting emergent behaviours. It is observed that ALME is capable of producing a set of solutions with diversity in all behaviour dimensions while keeping the final population size low. It is also observed that ALME is capable of filling its top layer feature space more consistently than MAP-Elites with the same behaviour dimensions.
    Collections
    Newly Added Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.