• Login
    View Item 
    •   Home
    • Brock University Publications & Manuscripts
    • Faculty of Mathematics and Science
    • Biological Sciences
    • View Item
    •   Home
    • Brock University Publications & Manuscripts
    • Faculty of Mathematics and Science
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Culture of Cancer Cells at Physiological Oxygen Levels Affects Gene Expression in a Cell-Type Specific Manner

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    biomolecules-12-01684.pdf
    Size:
    2.588Mb
    Format:
    PDF
    Description:
    Main article
    Download
    Author
    Alva, Ricardo
    Moradi, Fereshteh
    Liang, Ping
    Stuart, Jeffrey A.
    Keyword
    Oxygen
    Physioxia
    Hyperoxia
    Cell culture
    Cancer cells
    Transcriptomics
    Differential gene expression
    Hypoxia-inducible factor
    HIF-2α
    mtDNA-encoded genes
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/17039
    Abstract
    Standard cell culture is routinely performed at supraphysiological oxygen levels (~18% O2). Conversely, O2 levels in most mammalian tissues range from 1–6% (physioxia). Such hyperoxic conditions in cell culture can alter reactive oxygen species (ROS) production, metabolism, mitochondrial networks, and response to drugs and hormones. The aim of this study was to investigate the transcriptional response to different O2 levels and determine whether it is similar across cell lines, or cell line-specific. Using RNA-seq, we performed differential gene expression and functional enrichment analyses in four human cancer cell lines, LNCaP, Huh-7, PC-3, and SH-SY5Y cultured at either 5% or 18% O2 for 14 days. We found that O2 levels affected transcript abundance of thousands of genes, with the affected genes having little overlap between cell lines. Functional enrichment analysis also revealed different processes and pathways being affected by O2 in each cell line. Interestingly, most of the top differentially expressed genes are involved in cancer biology, which highlights the importance of O2 levels in cancer cell research. Further, we observed several hypoxia-inducible factor (HIF) targets, HIF-2α targets particularly, upregulated at 5% O2, consistent with a role for HIFs in physioxia. O2 levels also differentially induced the transcription of mitochondria-encoded genes in most cell lines. Finally, by comparing our transcriptomic data from LNCaP and PC-3 with datasets from the Prostate Cancer Transcriptome Atlas, a correlation between genes upregulated at 5% O2 in LNCaP cells and the in vivo prostate cancer transcriptome was found. We conclude that the transcriptional response to O2 over the range from 5–18% is robust and highly cell-type specific. This latter finding indicates that the effects of O2 levels are difficult to predict and thus highlights the importance of regulating O2 in cell culture.
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.3390/biom12111684
    Scopus Count
    Collections
    Biological Sciences

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.