• Login
    View Item 
    •   Home
    • Brock University Publications & Manuscripts
    • Faculty of Mathematics and Science
    • Biological Sciences
    • View Item
    •   Home
    • Brock University Publications & Manuscripts
    • Faculty of Mathematics and Science
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Data to accompany manuscript: Thermoconforming rays of the star-nosed mole

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    README.txt
    Size:
    1.512Kb
    Format:
    Text file
    Download
    Thumbnail
    Name:
    StarNosedMoleThermalImageData.csv
    Size:
    19.86Kb
    Format:
    Unknown
    Description:
    Star Nosed Mole Thermal Imaging ...
    Download
    Author
    Tattersall, Glenn
    Campbell, Kevin
    Keyword
    sensory organ
    thermoregulation
    insectivore
    thermal window
    thermography
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/16980
    Abstract
    The star-nosed mole (Condylura cristata) is well known for its unique star-like rostrum (‘star’) which is formed by 22 nasal appendages highly specialised for tactile sensation. As a northerly distributed insectivorous mammal occupying both aquatic and terrestrial habitats, this sensory appendage is regularly exposed to cold water and thermally conductive soil, leading us to ask whether the surface temperature, a proxy for blood flow to the star, conforms to the local ambient temperature to conserve body heat. Alternatively, given the high functioning and sensory nature of the star, we posited it was possible that the rays may be kept continually warm when foraging, with augmented peripheral blood flow serving metabolic needs of this tactile sensory organ. To test these ideas, we remotely monitored the surface temperatures of the star and other uninsulated appendages in response to changes in local water or ground temperature in wild-caught star-nosed moles briefly studied in captive situation. While the tail responded to increasing heat load through vasodilation, the surface temperature of the star consistently thermoconformed, varying passively in surface temperature, suggesting little evidence for thermoregulatory vasomotion. This thermoconforming response may have evolved as a compensatory response related to the high costs of heat dissipation to water or soil in this actively foraging insectivore.
    Collections
    Biological Sciences

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.