• Behavioural characteristics in phylogenetics : a case study using black fly (Diptera: Simuliidae) cocoon spinning behaviour

      Stuart, Alison E.; Department of Biological Sciences (Brock University, 1995-07-09)
      1-1 is torically, the predominan t method of reconstructing phylogenies has been through the use of morphological characters. There are new techniques now gaining acceptance, including molecular techniques al1d chromosomal information. Altl10ugh the study of behaviour has been used in a comparative framework, these analyses have, historically, been based on intuition. Hennig (1966) devised a neV\' method of reconstructing phylogenies which provided a 110ncircular method for formulating, testing and refining phylogenies. Subsequent s)Tstematists had virtually abandoned ecological and beha\lioural data as primary indicators of phylogenetic relationships (Brooks and McLennan 1991). Therefore, in a modern cladistic framework (sensu Hennig) the analysis of behavioural traits remains underrepresented as a method of reconstructing phylogenies. This thesis will reconstruct the phylogeny for species of black flies (Diptera: Simuliidae), using two steps. The first step is to thoroughl)' understand and explain the cocoon spinning in black fly larvae. There have bee115 previous descriptions of cocoon spinning, but all were incomplete or erroneous. The advances in technology, including video recorders and VCRs, have allowed this behaviour to be analyzed in great detail in 20 different species. A complete description of the cocoon spinning of Simulium \littatum is given. This description will be used as a template for the other species observed. The description and understanding of cococ)n spinning was the first step in undertaking a phylogenetic analysis using this behaviour. The behaviour was then broken down and analyzed, revealing 23 characters, 3 either qualitative and quantitative in nature. These characters were assessed in a cladistic framework (sensu Hennig) and a phylogenetic tree was reconstructed with a e.I of 0.91 and an R.I. of 0.96. This phylogenetic tree closely resembles a previously established pllylogenetic tree produced from morphological and cytological information. The importance of this result is the indication that, contrary to some authors, behavioural characters, if used properly, can add very informative characters to a data set.