Show simple item record

dc.contributor.authorHughes, James Alexander
dc.contributor.authorHoughten, Sheridan
dc.contributor.authorBrown, Joseph Alexander
dc.date.accessioned2022-11-03T18:00:31Z
dc.date.available2022-11-03T18:00:31Z
dc.date.issued2020-11
dc.identifier.citationJ. A. Hughes, S. Houghten and J. A. Brown, "Models of Parkinson's Disease Patient Gait," in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 11, pp. 3103-3110, Nov. 2020, doi: 10.1109/JBHI.2019.2961808.en_US
dc.identifier.issn2168-2194
dc.identifier.urihttp://hdl.handle.net/10464/16887
dc.description.abstractParkinson's Disease is a disorder with diagnostic symptoms that include a change to a walking gait. The disease is problematic to diagnose. An objective method of monitoring the gait of a patient is required to ensure the effectiveness of diagnosis and treatments. We examine the suitability of Extreme Gradient Boosting (XGBoost) and Artificial Neural Network (ANN) Models compared to Symbolic Regression (SR) using genetic programming that was demonstrated to be successful in previous works on gait. The XGBoost and ANN models are found to out-perform SR, but the SR model is more human explainable.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rights.urihttps://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
dc.subjectHealth Information Managementen_US
dc.subjectElectrical and Electronic Engineeringen_US
dc.subjectComputer Science Applicationsen_US
dc.subjectBiotechnologyen_US
dc.subjectParkinson's Diseaseen_US
dc.titleModels of Parkinson's Disease Patient Gaiten_US
dc.typeArticleen_US
dc.identifier.doi10.1109/jbhi.2019.2961808
dc.identifier.eissn2168-2208
dc.source.journaltitleIEEE Journal of Biomedical and Health Informatics
dc.source.volume24
dc.source.issue11
dc.source.beginpage3103
dc.source.endpage3110
refterms.dateFOA2022-11-03T18:00:31Z


Files in this item

Thumbnail
Name:
JBHI_PD_2019.pdf
Size:
1.016Mb
Format:
PDF
Description:
Article

This item appears in the following Collection(s)

Show simple item record