• Login
    View Item 
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Deep Evolutionary Generative Molecular Modeling for RNA Aptamer Drug Design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    BROCK_ANDRESS_CAMERON_2022.pdf
    Size:
    8.135Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Author
    Andress, Cameron
    Keyword
    Aptamer
    Variational Autoencoder
    SARS-CoV-2 Covid-19
    Deep Learning
    Therapeutic Drug Development
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/16875
    Abstract
    Deep Aptamer Evolutionary Model (DAPTEV Model). Typical drug development processes are costly, time consuming and often manual with regard to research. Aptamers are short, single-stranded oligonucleotides (RNA/DNA) that bind to, and inhibit, target proteins and other types of molecules similar to antibodies. Compared with small-molecule drugs, these aptamers can bind to their targets with high affinity (binding strength) and specificity (designed to uniquely interact with the target only). The typical development process for aptamers utilizes a manual process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX), which is costly, slow, and often produces mild results. The focus of this research is to create a deep learning approach for the generating and evolving of aptamer sequences to support aptamer-based drug development. These sequences must be unique, contain at least some level of structural complexity, and have a high level of affinity and specificity for the intended target. Moreover, after training, the deep learning system, known as a Variational Autoencoder, must possess the ability to be queried for new sequences without the need for further training. Currently, this research is applied to the SARS-CoV-2 (Covid-19) spike protein’s receptor-binding domain (RBD). However, careful consideration has been placed in the intentional design of a general solution for future viral applications. Each individual run took five and a half days to complete. Over the course of two months, three runs were performed for three different models. After some sequence, score, and statistical comparisons, it was observed that the deep learning model was able to produce structurally complex aptamers with strong binding affinities and specificities to the target Covid-19 RBD. Furthermore, due to the nature of VAEs, this model is indeed able to be queried for new aptamers of similar quality based on previous training. Results suggest that VAE-based deep learning methods are capable of optimizing aptamer-target binding affinities and specificities (multi-objective learning), and are a strong tool to aid in aptamer-based drug development.
    Collections
    Newly Added Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.