• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Applied Health Sciences
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Applied Health Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Waveform analysis of forearm muscle activity during dynamic wrist flexion and extension: Effects of forearm posture and torque direction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Parkinson_James_2022.pdf
    Size:
    3.830Mb
    Format:
    PDF
    Description:
    Master's thesis
    Download
    Author
    Parkinson, James
    Keyword
    Biomechanics
    Motor Control
    Forearm
    Muscle activity
    Wrist
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/16537
    Abstract
    Background and Aim: For both isometric and dynamic movements at the wrist, a popular analysis technique for forearm muscle activation includes averaged time-series data that may not represent changes in muscle activity throughout the task. Changes in muscle fiber length and environmental stimuli can alter forearm/upper arm muscle activity during dynamic tasks (D. A. Forman et al., 2020a). The purpose of this study was to determine the effects of forearm posture and torque on forearm muscle activity using waveform analysis. Methods: 12 participants performed a controlled wrist flexion/extension (±40°) tracking task using a wrist manipulandum. Participants were positioned in a neutral, 30° pronated, or 30° supinated forearm posture and the manipulandum applied a constant torque that resisted either wrist extension or flexion. Posture-torque combinations were performed once each, with six flexion/extension repetitions completed per condition. Wrist kinematics were tracked using the manipulandum and the movement cycle was time normalized. Surface electromyography from eight forearm/upper arm muscles were normalized to maximum voluntary contractions. Statistical non-parametric mapping analyzed waveforms for each muscle using a two-way repeated measures ANOVA for main/interaction effects (p=0.05), with post-hoc t-tests. Results: All muscles showed main effects for both posture and torque direction. Decreases in activity were observed in non-neutral forearm postures (flexors: 53-70%, extensors: 5-23% of the cycle). Flexion torque increased muscle activity for FCR, FDS, and FCU during 0-56% and 75-100%, 9-81%, and 22-51% of the movement cycle, respectively. ED and ECU had significantly increased activity during 0-26% and 70-100% of the movement cycle during the extension torque direction. During the neutral-flexion condition, FCR activity increased compared to all other conditions during 58-70% of the movement. Conclusion: When evaluating the entire waveform, non-neutral forearm postures decreased activity for all muscles during specific ranges. The extension torque increased ED and ECU activity at the start and end of the movement, while the flexion torque increased FCR and FDS activity for the majority of the movement. Also, FCR was important in supporting wrist extension during the neutral-flexion condition. Waveform analysis demonstrated complex forearm muscle activity patterns that could provide insight into neuromuscular control, performance, and fatigue progression.
    Collections
    M.Sc. Applied Health Sciences

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.