• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.A. Child and Youth Studies
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.A. Child and Youth Studies
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Dynamic Configuration of Large-Scale Cortical Networks: A Useful Framework for Clarifying the Heterogeneity Found in Attention-Deficit/Hyperactivity Disorder

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Kember_Jonah_2022.pdf
    Size:
    1.333Mb
    Format:
    PDF
    Download
    Author
    Kember, Jonah
    Keyword
    ADHD, EEG, Dynamic Functional Connectivity, Network Neuroscience
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/16406
    Abstract
    The heterogeneity of attention-deficit/hyperactivity disorder(ADHD) traits (inattention vs. hyperactivity/impulsivity) complicates diagnosis and intervention. Identifying how the configuration of large-scale functional brain networks during cognitive processing correlate with this heterogeneity could help us understand the neural mechanisms altered across ADHD presentations. Here, we recorded high-density EEG while 62 non-clinical participants (ages 18-24; 32 male) underwent an inhibitory control task (Go/No-Go). Functional EEG networks were created using sensors as nodes and across-trial phase-lag index values as edges. Using cross-validated LASSO regression, we examined whether graph-theory metrics applied to both static networks (averaged across time-windows: -500–0ms, 0–500ms) and dynamic networks (temporally layered with 2ms intervals), were associated with hyperactive/impulsive and inattentive traits. Network configuration during response execution/inhibition was associated with hyperactive/impulsive (mean R2across test sets = .20, SE = .02), but not inattentive traits. Post-stimulus results at higher frequencies (Beta, 14-29Hz; Gamma, 30-90Hz) showed the strongest association with hyperactive/impulsive traits, and predominantly reflected less burst-like integration between modules in oscillatory beta networks during execution, and increased integration/small-worldness in oscillatory gamma networks during inhibition. We interpret the beta network results as reflecting weaker integration between specialized pre-frontal and motor systems during motor response preparation, and the gamma results as reflecting a compensatory mechanism used to integrate processing between less functionally specialized networks. This research demonstrates that the neural network mechanisms underlying response execution/inhibition might be associated with hyperactive/impulsive traits, and that dynamic, task-related changes in EEG functional networks may be useful in disentangling ADHD heterogeneity.
    Collections
    M.A. Child and Youth Studies

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.