• Login
    View Item 
    •   Repository Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Earth Sciences
    • View Item
    •   Repository Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Earth Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regional variations of deformation mechanisms in the Lorrain Quartzite near Whitefish Falls, Ontario, Canada /

    Thumbnail
    View/Open
    Brock_Marsh_Jennifer_2009.pdf (7.331Mb)
    Date
    2009-06-15
    Author
    Marsh, Jennifer.
    Metadata
    Show full item record
    Abstract
    The quartzite microfabric found in the Lorrain Formation was studied across the La Cloche syncline, along a regional north-south transect along highway 6, near Whitefish Falls, Ontario. The complete stratigraphic sequence across the syncline is preserved, and is present on each fold limb. The lithostratigraphic units with the smallest grains size and lowest mica content are located close to the core of the fold, while coarser grained mica and feldspar rich units are situated at the northern and southern most extent of the transect. Deformation mechanisms vary with lithology and with position across the fold. Pressure solution appears to be the dominant deformation mechanism in the feldspathic, micaceous and ferruginous units. In the finer grained, mica poor white medium grained and cherty sandstone units, grain boundary migration (GBM) characteristics show dominance over those of pressure solution and show high amounts of fracturing which cut migrated boundaries and therefore post date GBM. All samples across the fold display a preferred orientation of quartz c-axes. The senses of asymmetry of fabrics are found to be similar across the syncline, with the exception of the ferruginous sandstone unit. Formation of these similar fabrics synmietries can not be the result of strain related to first order folding. The mica content appears to be related to the percentage of quartz lost due to pressure solution as a result of strain; the more mica present, the less quartz was lost. Calculations based on the shape of initial grains suggest that conservatively 30% of the quartz volume has been dissolved out of the Lorrain quartzite, and potentially migrated hundreds of meters to other members of the Huronian Supergroup as there was no meso or macroscopic evidence observed in outcrop.
    URI
    http://hdl.handle.net/10464/1592
    Collections
    • M.Sc. Earth Sciences

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback