• Login
    View Item 
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    •   Home
    • Brock Theses
    • Newly Added Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Weighted Graph Compression using Genetic Algorithms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Emilia_s_Final Thesis.pdf
    Size:
    7.328Mb
    Format:
    PDF
    Download
    Author
    Rutkowski, Emilia
    Keyword
    Genetic Algorithm
    Graph Compression
    Weighted Networks
    Contact Networks
    NSGA-II
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/15768
    Abstract
    Networks are a great way to present information. It is easy to see how different objects interact with one another, and the nature of their interaction. However, living in the technological era has led to a massive surge in data. Consequently, it is very common for networks/graphs to be large. When graphs get too large, the computational power and time to process these networks gets expensive and inefficient. This is common in areas such as bioinformatics, epidemic contact tracing, social networks, and many others. Graph compression is the process of merging nodes that are highly connected into one super-node, thus shrinking the graph. The goal of graph compression is to merge nodes while mitigating the amount of information lost during the compression process. Unweighted graphs are largely studied in this area. However, in this thesis, we extend the approaches to compress weighted graphs via genetic algorithms and analyse the compression from an epidemic point of view. It is seen that edge weights provide vital information for graph compression. Not only this, but having meaningful edge weights is important as different weights can lead to different results. Moreover, both the original edge weights and adjusted edge weights produce different results when compared to a widely used community detection algorithm, the Louvain Algorithm. However, the different results may be helpful to public health officials. Lastly, the NSGA-II algorithm was implemented. It was found that NSGA-II is more suitable as a pre-processing tool, in order to find a target compression that introduces a comfortable level of distortion, and then using the single-objective genetic algorithm to achieve an improved solution for the target.
    Collections
    Newly Added Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.