• Login
    View Item 
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Chemistry
    • View Item
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Design of Redox-active Ligands: In Pursuit of Stable Radicals, their Complexes, and Assembly of Paramagnetic Coordination Clusters.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Bonanno_Nico_2021.pdf
    Size:
    27.95Mb
    Format:
    PDF
    Description:
    Full thesis document for Nico ...
    Download
    Author
    Bonanno, Nico Matteo
    Keyword
    Redox-active Ligands
    Stable Radicals
    Pi-dimerization
    Molecular Grids
    Valence Tautomerism
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/15135
    Abstract
    This thesis describes the design, synthesis, properties, and coordination chemistry of redoxactive ligands. This thesis also explores new ways of expanding our ligand systems, in order to improve their binding capacities. We accomplished this by utilizing familiar redox-active moieties and structures to those published previously in our group, but with enhanced topological capacities and predictable structural outcomes. Chapter 1 begins with a general outline of the fundamental principles that govern organic radicals including; their reactivity, their properties and applications, and how these can be applied to the design of ligands for polynuclear assembly. Chapter 2 starts with a brief overview of arylazo ligands and the synthesis of a new hydrazone substituted phenalenol ligand (2.1). In the following section (2.2) we use this ligand to produce homoleptic ligand mixed-valence complexes featuring trivalent cobalt and iron metals. The chapter is concluded (2.3) with the synthesis of a new ditopic aryl-azo ligand and its cobalt coordination chemistry involving a neutral tetra-radical/tetra-nuclear molecular grid featuring valence tautomerism. Chapter 3 begins with the design and synthesis of a new ditopic diamino phenol ligand, which was found to oxidize to a neutral stable phenoxyl radical (3.1-3.2). The solution properties, which include reversible pi-dimerization of this stable radical are also described (3.3), and later the substitution chemistry of this new ligand is explored (3.4). In chapter 4, we describe the coordination chemistry of this new ditopic aminophenol ligand, which includes assembly into several coordination clusters involving copper (4.2), iron (4.3), nickel (4.4), and zinc (4.5). These coordination clusters feature the ligand in a variety of oxidation states; including rare examples of dianion “aminyl” radical clusters. In chapter 5, we begin with a description of a new synthetic derivative which can be used for the construction of larger tetratopic or asymmetric diamino phenol ligands. In 5.2 we describe the synthesis of a tetratopic aminophenol ligand along with its reactivity and aerial oxidation to a tri-phenoxyl radical. In 5.3, we conclude the thesis with the use of an asymmetric diamino phenol ligand and it’s Cu(II/III) coordination chemistry, which displayed unique reactivity with molecular oxygen.
    Collections
    Ph.D. Chemistry

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.