• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Comparative Study On Cooperative Particle Swarm Optimization Decomposition Methods for Large-scale Optimization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Clark_Mitchell_2020.pdf
    Size:
    402.6Kb
    Format:
    PDF
    Download
    Author
    Clark, Mitchell
    Keyword
    AI
    Large Scale Global Optimization
    Cooperative PSO
    Particle Swarm Optimization
    Comparative Study
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/15031
    Abstract
    The vast majority of real-world optimization problems can be put into the class of large-scale global optimization (LSOP). Over the past few years, an abundance of cooperative coevolutionary (CC) algorithms has been proposed to combat the challenges of LSOP’s. When CC algorithms attempt to address large scale problems, the effects of interconnected variables, known as variable dependencies, causes extreme performance degradation. Literature has extensively reviewed approaches to decomposing problems with variable dependencies connected during optimization, many times with a wide range of base optimizers used. In this thesis, we use the cooperative particle swarm optimization (CPSO) algorithm as the base optimizer and perform an extensive scalability study with a range of decomposition methods to determine ideal divide-and-conquer approaches when using a CPSO. Experimental results demonstrate that a variety of dynamic regrouping of variables, seen in the merging CPSO (MCPSO) and decomposition CPSO (DCPSO), as well varying total fitness evaluations per dimension, resulted in high-quality solutions when compared to six state-of-the-art decomposition approaches.
    Collections
    M.Sc. Computer Science

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.