• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Biological Sciences
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    INVOLVEMENT OF THE ENDOCANNABINOID SYSTEM IN THE EPENDYMOGLIAL RESPONSE TO SPINAL CORD REGENERATION IN THE MEXICAN AXOLOTL, Ambystoma mexicanum

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Tolentino_Michael_2021.pdf
    Size:
    37.79Mb
    Format:
    PDF
    Download
    Author
    Tolentino, Michael
    Keyword
    Regeneration
    Axolotl
    Ependymoglial
    CB1
    CB2
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/15009
    Abstract
    Research into the molecular mechanisms of the psychoactive effects of cannabis has led to the discovery of the endocannabinoid system (ECS), a neuromodulatory system conserved throughout the animal kingdom. Little is known about its function in mammals, but there is evidence suggesting its contributions in the cellular processes that are important in CNS development and are conserved during CNS regeneration. However, these studies focussed primarily on mammals, which display limited abilities to regenerate after traumatic CNS injury. Furthermore, nothing is known regarding the role of endocannabinoids in CNS regeneration-competent species like the Mexican axolotl, one of the few vertebrates that can regenerate their spinal cord. The current study investigates the potential role of the ECS in influencing the pro-regenerative response observed in the axolotl spinal cord. I provide evidence that the main ECS receptor in the CNS (CB1) is upregulated in the regenerating caudal spinal cord and tail tissues of larval axolotls at 4 hours post amputation, lasting until 14 days post amputation. By performing immunofluorescence studies on these tissues, I demonstrate the expression of this receptor mainly in the ependymal region. In addition, bath application of the CB1 inverse agonist, AM251, significantly inhibited caudal growth of the spinal cord and tail by 7 days post amputation. The current study also identified an upregulation in a second ECS receptor, CB2, at 7- and 14-days post amputation. Immunofluorescence analysis revealed the localization of this receptor to the subependymal regions within the spinal cord. Furthermore, inhibition with the CB2 inverse agonist, AM630, similarly demonstrated an inhibition in spinal cord and tail regeneration by 7 days post amputation. An assessment of CB1 and CB2 expression was performed by identifying their localization in bromodeoxyuridine-positive (proliferating) and doublecortin-positive (differentiating neuronal) cells in 7-day regenerate tissue. These studies are the first to examine the role of the ECS during spinal cord regeneration in a regeneration-competent vertebrate and may aid in developing novel therapies for human nervous system injuries or pathologies.
    Collections
    M.Sc. Biological Sciences

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.