• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Objective reduction in many-objective optimization problems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Sengupta_Arpi_2019.pdf
    Size:
    961.7Kb
    Format:
    PDF
    Download
    Author
    Sen Gupta, Arpi
    Keyword
    objective reduction
    many-objective optimization
    random reduction
    correlation reduction
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/14540
    Abstract
    Many-objective optimization problems (MaOPs) are multi-objective optimization problems which have more than three objectives. MaOPs face significant challenges because of search efficiency, computational cost, decision making, and visualization. Many well-known multi-objective evolutionary algorithms do not scale well with an increasing number of objectives. The objective reduction can alleviate such difficulties. However, most research in objective reduction use non-dominated sorting or Pareto ranking. However, Pareto is effective in problems having less than four objectives. In this research, we use two approaches to objective reduction: random-based and linear coefficient-based. We use the sum of ranks instead of Pareto Ranking. When applied to many-objective problems, the sum of ranks has outperformed many other optimization approaches. We also use the age layered population structure (ALPS). We use ALPS in our approach to remove premature convergence and improve results. The performance of the proposed methods has been studied extensively on the famous benchmark problem DTLZ. The original GA and ALPS outperform the objective reduction algorithms in many test cases of DTLZ. Among all reduction algorithms, a linear coefficient based reduction algorithm provides better performance for some problems in this test suite. Random based reduction is not an appropriate strategy for reducing objectives.
    Collections
    M.Sc. Computer Science

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.