• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Applied Health Sciences
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Applied Health Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Investigating the role of estrogen deprivation and diet-induced insulin resistance on markers of amyloid-β production and degradation in the brain

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Hayward_Grant_2019.pdf
    Size:
    2.676Mb
    Format:
    PDF
    Download
    Author
    Hayward, Grant
    Keyword
    Alzheimer's Disease, Estrogen, Obesity, Insulin, Amyloid
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/14469
    Abstract
    Estrogen loss, which women experience during menopause, has recently been associated with increased amyloid-β (Aβ) peptides, a main feature of Alzheimer’s Disease (AD). Furthermore, diet-induced insulin resistance has also been shown to increase Aβ; however, whether this process is exacerbated with the loss of estrogen remains unknown. We aimed to investigate the effects of estrogen loss on amyloid production and degradation pathways, as well as markers of insulin signaling, glucose uptake and synaptic function, in an insulin resistant mouse model. To do this, female C57BL/6J mice received either bilateral ovariectomy, to simulate estrogen loss, (OVX; n=20) or remained intact (n=20) at 24 weeks of age. Mice were then placed on either a low or high fat diet (LFD; n=10 for OVX and intact, HFD; n=10 for OVX and intact) for 10 weeks to induce insulin intolerance. Prefrontal cortex and hippocampus tissues were then isolated and markers of amyloidogenesis, Aβ degradation, insulin signaling, glucose uptake, and synaptic function were examined. Independently, OVX led to increases in the amyloidogenic marker, sAPPβ. Furthermore, HFD combined with OVX, led to lower IDE protein content and activity in the prefrontal cortex, indicative of decreased Aβ degradation. Lastly, HFD with OVX led to exacerbated decreases in pGSK-3β /GSK, GLUT1, and Homer-1 (a postsynaptic marker) in the hippocampus, and GLUT3 in the prefrontal cortex. Data from this study provide evidence of a synergistic effect of systemic insulin resistance and estrogen loss in decreasing brain markers of Aβ degradation, insulin signaling, glucose uptake, and synaptic function. Furthermore, findings indicate how the loss of estrogen can promote the formation of amyloidogenic APP cleavage products, independent of diet-induced insulin resistance. These results ultimately contribute to our understanding of both estrogen-deprivation and insulin resistance on female brain health in relation to AD progression.
    Collections
    M.Sc. Applied Health Sciences

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.