Show simple item record

dc.contributor.authorVandenwint, AL
dc.contributor.authorZhu-Pawlowsky, AJ
dc.contributor.authorKirby, A
dc.contributor.authorTattersall, GJ
dc.contributor.authorPamenter, ME
dc.date.accessioned2019-07-16T17:10:54Z
dc.date.available2019-07-16T17:10:54Z
dc.date.issued2019
dc.identifier.citationJournal of Thermal Biology 84: 228-235en_US
dc.identifier.issn0306-4565
dc.identifier.urihttp://hdl.handle.net/10464/14278
dc.description.abstractNaked mole-rats are among the most hypoxia-tolerant mammals but have a poor thermoregulatory capacity due to their lack of insulating fur and fat, and small body size. In acute hypoxia, naked mole-rat body temperature (Tb) decreases to ambient temperature (Ta) but the mechanisms that underlie this thermoregulatory response are unknown. We hypothesized 1) that naked mole-rat blood vessels vasodilate during hypoxia to shunt heat toward the body surface and/or 2) that they augment heat loss through evaporative cooling. Using open-flow re- spirometry (indirect calorimetry) we explored metabolic and thermoregulatory strategies of naked mole-rats exposed to hypoxia (7% O2 for 1 h) at two relative humidities (RH; 50 or 100% water saturation), and in two Ta's (25 and 30 °C), alone, and following treatment with the vasoconstrictor angiotensin II (ANGII). We found that Tb and metabolic rate decreased in hypoxia across all treatment groups but that neither RH nor ANGII effected either variable in hypoxia. Conversely, both Tb and metabolic rate were reduced in 100% RH or by ANGII treatment in normoxia at 25 °C, and therefore the absolute change in both variables with the onset of hypoxia was reduced when vasodilation or evaporative cooling were prevented. We conclude that naked mole-rats employ evaporative cooling and vasodilation to thermoregulate in normoxia and in 25 °C but that neither mechanism is involved in thermoregulatory changes during acute hypoxia. These findings suggest that NMRs may employ passive strategies such as reducing thermogenesis to reduce Tb in hypoxia, which would support metabolic rate suppression.en_US
dc.language.isoenen_US
dc.titleEvaporative cooling and vasodilation mediate thermoregulation in naked mole-rats during normoxia but not hypoxiaen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jtherbio.2019.07.011
refterms.dateFOA2021-07-29T13:28:50Z


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
Vandewint et al 2019 Evaporative ...
Size:
1.484Mb
Format:
PDF
Description:
Main Article

This item appears in the following Collection(s)

Show simple item record