• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Management
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Management
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Learning Product Attributes from User-Generated Content for Dynamic Promotion Strategies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Abduvaitova_Lola_2019.pdf
    Size:
    1.933Mb
    Format:
    PDF
    Download
    Author
    Abduvaitova, Lola
    Keyword
    Classification of products
    Search and experience goods
    Text analytics
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/14130
    Abstract
    One widely adopted product attribute classification in the literature is the “Search” versus “Experience” dichotomy. Because the costs involved in searching and experiencing products vary across consumers and over a product’s life time, it is important for marketers to understand consumers’ evaluation of these attributes in order to formulate scalable and dynamic promotion strategies. This thesis attempts to address this challenge by proposing a text analytics framework for understanding consumers’ evaluation of product attributes to support agile promotion strategies. In the past, researchers have attempted to classify entire product categories as search or experience via questionnaires or using quantitative approaches by analyzing review star ratings. This thesis uses objective consumer reviews and text mining techniques to extract product features that can define search or experience attributes. A hybrid of unsupervised and supervised learning techniques was used to generate labelled training data from eight different product categories of Amazon and train classification models to determine the likely position of a product within the search-experience product classification spectrum. Extensive experiments using best-case and worst-case scenario were used to improve the accuracy levels of decision-tree based classification models and demonstrate the scalability of the text analytics framework. The proposed approach also incorporated a mechanism to aggregate the scores that the model gives to each individual review in order to determine the likely position at a product level. It is also shown that a product’s position in the search-experience spectrum may change during its review cycle, indicating that marketers need to investigate reviews for any periods of interest to develop effective promotion strategies in a more agile fashion. From a theoretical view, the text mining approach significantly adds to the existing body of knowledge in the classification of product attributes for supporting promotions. In addition to detecting dominant signals for search and experience positions, marketers can uncover a great deal of contents to formulate more specific advertising messages.
    Collections
    M.Sc. Management

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.