• Login
    View Item 
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Chemistry
    • View Item
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Synthesis and Reactivity of Main Group Complexes for Applications in Small Molecule Activation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Nguyen_Minh Tho_2019.pdf
    Size:
    7.988Mb
    Format:
    PDF
    Download
    Author
    Nguyen, Minh Tho
    Keyword
    Germylone
    Phosphinidene
    Pincer ligands
    Main group compounds
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/14086
    Abstract
    The work described in this thesis is focused on the preparation of a series of novel main group complexes, featuring unusual structural and bonding situations, and the study of their reactivity toward small molecules. The new zinc complexes dimphZnBu (V-2) and dimphZnCl2Li(THF)3 (V-3), supported by a diiminophenyl (dimph) ligand were prepared. The reaction of complex V-3 with LiHBEt3 resulted in hydride transfer to the C=N imine group to give an unusual zinc dimer (V-7). The latter transformation occurs via formation of compound (ɳ1(C),ĸ1(N)- 2,6-(2,6-iPr2C6H3N=CH)2C6H3)2Zn (V-5) which can be also accessed by reduction of V-7 with KC8. Diiminophenyl (dimph) proved to be an excellent ligand platform to stabilise a low-valent phosphorus centre. The resultant compound dimphP (VI-2), which can be rationalised as an imino-stabilised phosphinidene or benzoazaphopshole, shows remarkable chemical stability toward water and oxygen. VI-2 reacts with excess strong acid HCl to generate the P(III) chloride (dimHph)PCl (VI-6). Surprisingly, substitution of the chloride under some nucleophilic (KOBut) and electrophilic conditions (Me3SiOTf) regenerates the parent compound VI-2 by proton removal from the weakly acidic CH2N position. A related species (dimH2ph)P (VI-10) is produced upon thermal rearrangement of the hydride (dimHph)PH (VI-9). The molecular structure and reactivity of compounds VI-2 and other related compounds are also discussed. The reduction of the O,C,O-chelated phosphorus (III) chloride (VI-16) ( O,C,O = 2,6-bis[(2,6-diisopropyl)phenoxyl]phenyl) with KC8 or PMe3 resulted in the formation of a cyclic three-membered phosphorus compound (VI-18). The intermediacy of phosphinidene VI-17 was confirmed by trapping experiments and a VT 31P{1H} NMR study. The reaction of in-situ generated phosphinidene with either PhSiH3 or HBpin resulted in the formation of an unprecedented phosphine (VI-23). The treatment of VI-16 with two equivalents of DippNHC carbene led to ArP(Cl)NHC product (VI-24). The germylone dimNHCGe (dimNHC = diimino N-Heterocyclic Carbene, VII-8) was successfully prepared by the reduction of germanium cation (VII-7) with KC8. The molecular structure of VII-8 was unambiguously established, using NMR spectroscopy and single-crystal X-ray diffraction analysis. The reactivity of VII-8 was investigated. VII-8 is inactive towards butadiene but undergoes an oxidative cyclization with tetrachloro-o-benzoquinone to give a tetragermanium derivative. VII-8 undergoes oxidation addition of CH3I and PhI, followed by an unusual migration of the Me and Ph groups from germanium to the carbene ligand. Related chemistry takes place upon protonation with dry HCl, which results in the migration of the hydride to the carbene ligand.
    Collections
    Ph.D. Chemistry

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.