• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Efficient Merging and Decomposition Variants of Cooperative Particle Swarm Optimization for Large Scale Problems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock DOUGLAS, Jay 2018.pdf
    Size:
    4.037Mb
    Format:
    PDF
    Description:
    Main article - thesis
    Download
    Author
    Douglas, Jay
    Keyword
    Large-scale Optimization
    Particle Swarm Optimization
    Cooperative
    Merging
    Decomposition
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/13876
    Abstract
    For large-scale optimization problems (LSOPs), an increased problem size reduces performance by both increasing the landscape complexity, as well as exponentially increasing the search space size. These contributing factors make up the "curse of dimensionality", which is addressed either by improving the search operator of the meta-heuristic or decomposing the high-dimensional problem into smaller sub-problems. Unfortunately, non-separable LSOPs contain a scaling number of variable dependencies which should be optimized together but are often separated into different sub-problems due to insufficient grouping strategies. Various particle swarm optimization (PSO) techniques have been proposed in order to address these LSOPs, either through the improvement of search operators or utilizing decomposition. However, there is a lack of comparison between them showing which PSO variant performs best for specific types of LSOPs. Additionally, decomposition variants which utilize a cooperative PSO (CPSO) approach still struggle to properly group related variables in more difficult non-separable multimodal problems. In an attempt to better optimize these non-separable LSOPs, this thesis introduces two new adaptive decomposition and merging CPSO algorithms, referred to as DCPSO2 and MCPSO2 respectively, which offer a new regrouping strategy by adaptively splitting and merging stagnated sub-swarms according to the their fitness. These algorithms proposed in this thesis are then compared against existing CPSO variants in order to establish the best decomposition-based PSO algorithm for LSOPs. Results show that the decomposition and merging variants are able to perform competitively with previously well-established CPSO algorithms for large-scale problems across all problem classes. DCPSO ranks the highest in terms of accuracy across all non-separable problems while MCPSO and MCPSO2 prove to have the fastest convergence amongst all algorithms.
    Collections
    M.Sc. Computer Science

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.