• Login
    View Item 
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Biotechnology
    • View Item
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Biotechnology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    A study of lipid recognition and membrane binding by the human oxysterol-binding protein (OSBP).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Mukherjee_Parthajit_2017.pdf
    Size:
    9.891Mb
    Format:
    PDF
    Description:
    PhD thesis
    Download
    Author
    Mukherjee, Parthajit
    Keyword
    oxysterol binding protein (OSBP)
    dual polarization interferometry (DPI)
    phosphatidylinositol-4-phosphate
    25-hydroxycholesterol
    Förster resonance energy transfer (FRET)
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/10952
    Abstract
    Recent studies have established oxysterol-binding protein (OSBP) and members of the OSBP-related protein (ORP) family as global cellular sterol sensors that participate in non-vesicular anterograde transport of monomeric sterols from the endoplasmic reticulum to other organelles such as the Golgi and the plasma membrane. By exchanging sterols for phosphoinositides, these multi-domain proteins change the bilayer composition at membrane contact sites and thus, regulate various signaling pathways. Despite the wealth of knowledge garnered from the study of fluorescent/radiolabeled ligand-protein interactions and inter-vesicular lipid transfer assays in vitro, the precise nature of the association of ORPs with organellar membranes and the factors modulating such interactions have remained largely enigmatic. The goal of my project was to characterize the behaviour of human OSBP using a label-free analytical technique called dual polarization interferometry (DPI). This technique enables surface-immobilization of phospholipid vesicles to observe and analyze the behaviour of proteins towards adsorbed bilayers. From my investigation, I found that OSBP prefers binding to membranes containing anionic phospholipids, such as phosphatidylinositol-4-phosphate (PI(4)P), over membranes made up of neutral phosphatidylcholine (PC). In the presence of PI(4)P, the wild-type protein clearly demonstrated a rapid bilayer association, followed by PI(4)P extraction and a slower dissociation, in a dosage-dependent fashion. The OSBP-related domain (ORD) mutant, OSBP-HH/AA, due to its impaired ability to extract PI(4)P, failed to dissociate from the membrane while the pleckstrin homology domain (PHD) mutant, OSBP-RR/EE, could not associate with membranes at all. The presence of sterols did not alter OSBP’s affinity for PC membranes despite a two-fold increase in protein adsorption per unit area in the presence of cholesterol in the membrane, compared to 25-hydroxycholesterol. Both cholesterol and 25-hydroxycholesterol competed with 22-NBD-cholesterol for the binding site in the ORD of OSBP, with resulting EC50 values of 15.6 ± 0.7 nM for the former and 5.0 ± 0.5 nM for the latter. OSBP also transferred ORD-bound fluorescent cholesterol to acceptor vesicles, but the rate remained unaltered upon incorporation of PI(4)P in those membranes. These results provide useful insight into the preferential association of OSBP with membranes containing specific recognizable ligands, such as sterols and PI(4)P, and help build a molecular level description of the mechanism of this protein.
    Collections
    Ph.D. Biotechnology

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.