• Login
    View Item 
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    •   Home
    • Brock Theses
    • Masters Theses
    • M.Sc. Computer Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Shortest Path Routing on the Hypercube with Faulty Nodes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Arabpour_Niasari_Mehrdad ...
    Size:
    2.405Mb
    Format:
    PDF
    Download
    Author
    Arabpour Niasari, Mehrdad
    Keyword
    Parallel Computing
    Hypercube
    Shortest Path
    Faulty Hypercube
    Routing
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/10728
    Abstract
    Interconnection networks are widely used in parallel computers. There are many topologies for interconnection networks and the hypercube is one of the most popular networks. There are a variety of different routing paradigms that need to be investigated on the hypercube. In this thesis we investigate the shortest path routing between two nodes on the hypercube when some nodes are faulty and cannot be used. In this thesis the shortest path between two nodes is considered as the Hamming distance of them. Regarding the shortest path problem in a faulty hypercube, some efficient algorithms have been proposed when each processor (node) has limited information regarding the status of other processors (whether they are faulty or not). There are also some proposed algorithms for the case where there is no limitation on the data of each processor but they are not efficient and are exponential in terms of number of faulty nodes and dimension of the hypercube. To check whether there is a shortest path between two given nodes in a faulty hypercube, we propose a polynomial algorithm with time complexity of O(n^2 * m^2) where n is the dimension of the hypercube and m is the number of faulty nodes. Our algorithm only requires the source node to know the state of all other nodes. The proposed algorithm first checks whether there is a shortest path from the source node to the target node and then it can construct it efficiently. Our idea is based on a so-called ordering and permutation model of paths in the hypercube. We use a constructive approach to find the path which is a permutation as well. We then use inclusion-exclusion and dynamic programming techniques to make our method efficient. We also propose an algorithm for counting all possible shortest paths in the hypercube.
    Collections
    M.Sc. Computer Science

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.